Termination of the given ITRSProblem could not be shown:
↳ ITRS
↳ ITRStoIDPProof
ITRS problem:
The following domains are used:
z
The TRS R consists of the following rules:
Cond_eval(TRUE, x, y, z) → eval(+@z(x, y), -@z(y, 2@z), z)
eval(x, y, z) → Cond_eval1(>=@z(x, 0@z), x, y, z)
eval(x, y, z) → Cond_eval(>=@z(x, 0@z), x, y, z)
Cond_eval1(TRUE, x, y, z) → eval(+@z(x, z), +@z(y, 1@z), -@z(z, 2@z))
The set Q consists of the following terms:
Cond_eval(TRUE, x0, x1, x2)
eval(x0, x1, x2)
Cond_eval1(TRUE, x0, x1, x2)
Added dependency pairs
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
I DP problem:
The following domains are used:
z
The ITRS R consists of the following rules:
Cond_eval(TRUE, x, y, z) → eval(+@z(x, y), -@z(y, 2@z), z)
eval(x, y, z) → Cond_eval1(>=@z(x, 0@z), x, y, z)
eval(x, y, z) → Cond_eval(>=@z(x, 0@z), x, y, z)
Cond_eval1(TRUE, x, y, z) → eval(+@z(x, z), +@z(y, 1@z), -@z(z, 2@z))
The integer pair graph contains the following rules and edges:
(0): EVAL(x[0], y[0], z[0]) → COND_EVAL(>=@z(x[0], 0@z), x[0], y[0], z[0])
(1): EVAL(x[1], y[1], z[1]) → COND_EVAL1(>=@z(x[1], 0@z), x[1], y[1], z[1])
(2): COND_EVAL1(TRUE, x[2], y[2], z[2]) → EVAL(+@z(x[2], z[2]), +@z(y[2], 1@z), -@z(z[2], 2@z))
(3): COND_EVAL(TRUE, x[3], y[3], z[3]) → EVAL(+@z(x[3], y[3]), -@z(y[3], 2@z), z[3])
(0) -> (3), if ((z[0] →* z[3])∧(x[0] →* x[3])∧(y[0] →* y[3])∧(>=@z(x[0], 0@z) →* TRUE))
(1) -> (2), if ((z[1] →* z[2])∧(x[1] →* x[2])∧(y[1] →* y[2])∧(>=@z(x[1], 0@z) →* TRUE))
(2) -> (0), if ((+@z(y[2], 1@z) →* y[0])∧(-@z(z[2], 2@z) →* z[0])∧(+@z(x[2], z[2]) →* x[0]))
(2) -> (1), if ((+@z(y[2], 1@z) →* y[1])∧(-@z(z[2], 2@z) →* z[1])∧(+@z(x[2], z[2]) →* x[1]))
(3) -> (0), if ((-@z(y[3], 2@z) →* y[0])∧(z[3] →* z[0])∧(+@z(x[3], y[3]) →* x[0]))
(3) -> (1), if ((-@z(y[3], 2@z) →* y[1])∧(z[3] →* z[1])∧(+@z(x[3], y[3]) →* x[1]))
The set Q consists of the following terms:
Cond_eval(TRUE, x0, x1, x2)
eval(x0, x1, x2)
Cond_eval1(TRUE, x0, x1, x2)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDPtoQDPProof
I DP problem:
The following domains are used:
z
R is empty.
The integer pair graph contains the following rules and edges:
(0): EVAL(x[0], y[0], z[0]) → COND_EVAL(>=@z(x[0], 0@z), x[0], y[0], z[0])
(1): EVAL(x[1], y[1], z[1]) → COND_EVAL1(>=@z(x[1], 0@z), x[1], y[1], z[1])
(2): COND_EVAL1(TRUE, x[2], y[2], z[2]) → EVAL(+@z(x[2], z[2]), +@z(y[2], 1@z), -@z(z[2], 2@z))
(3): COND_EVAL(TRUE, x[3], y[3], z[3]) → EVAL(+@z(x[3], y[3]), -@z(y[3], 2@z), z[3])
(0) -> (3), if ((z[0] →* z[3])∧(x[0] →* x[3])∧(y[0] →* y[3])∧(>=@z(x[0], 0@z) →* TRUE))
(1) -> (2), if ((z[1] →* z[2])∧(x[1] →* x[2])∧(y[1] →* y[2])∧(>=@z(x[1], 0@z) →* TRUE))
(2) -> (0), if ((+@z(y[2], 1@z) →* y[0])∧(-@z(z[2], 2@z) →* z[0])∧(+@z(x[2], z[2]) →* x[0]))
(2) -> (1), if ((+@z(y[2], 1@z) →* y[1])∧(-@z(z[2], 2@z) →* z[1])∧(+@z(x[2], z[2]) →* x[1]))
(3) -> (0), if ((-@z(y[3], 2@z) →* y[0])∧(z[3] →* z[0])∧(+@z(x[3], y[3]) →* x[0]))
(3) -> (1), if ((-@z(y[3], 2@z) →* y[1])∧(z[3] →* z[1])∧(+@z(x[3], y[3]) →* x[1]))
The set Q consists of the following terms:
Cond_eval(TRUE, x0, x1, x2)
eval(x0, x1, x2)
Cond_eval1(TRUE, x0, x1, x2)
Represented integers and predefined function symbols by Terms
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDPtoQDPProof
↳ QDP
↳ UsableRulesProof
Q DP problem:
The TRS P consists of the following rules:
EVAL(x[0], y[0], z[0]) → COND_EVAL(greatereq_int(x[0], pos(0)), x[0], y[0], z[0])
EVAL(x[1], y[1], z[1]) → COND_EVAL1(greatereq_int(x[1], pos(0)), x[1], y[1], z[1])
COND_EVAL1(true, x[2], y[2], z[2]) → EVAL(plus_int(x[2], z[2]), plus_int(pos(s(0)), y[2]), minus_int(z[2], pos(s(s(0)))))
COND_EVAL(true, x[3], y[3], z[3]) → EVAL(plus_int(x[3], y[3]), minus_int(y[3], pos(s(s(0)))), z[3])
The TRS R consists of the following rules:
greatereq_int(pos(x), pos(0)) → true
greatereq_int(neg(0), pos(0)) → true
greatereq_int(neg(0), neg(y)) → true
greatereq_int(pos(x), neg(y)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(neg(x), pos(s(y))) → false
greatereq_int(neg(s(x)), pos(0)) → false
greatereq_int(neg(s(x)), neg(0)) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(neg(x), pos(y)) → minus_nat(y, x)
plus_int(neg(x), neg(y)) → neg(plus_nat(x, y))
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), neg(y)) → minus_nat(y, x)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
minus_int(pos(x), neg(y)) → pos(plus_nat(x, y))
The set Q consists of the following terms:
Cond_eval(true, x0, x1, x2)
eval(x0, x1, x2)
Cond_eval1(true, x0, x1, x2)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDPtoQDPProof
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
Q DP problem:
The TRS P consists of the following rules:
EVAL(x[0], y[0], z[0]) → COND_EVAL(greatereq_int(x[0], pos(0)), x[0], y[0], z[0])
EVAL(x[1], y[1], z[1]) → COND_EVAL1(greatereq_int(x[1], pos(0)), x[1], y[1], z[1])
COND_EVAL1(true, x[2], y[2], z[2]) → EVAL(plus_int(x[2], z[2]), plus_int(pos(s(0)), y[2]), minus_int(z[2], pos(s(s(0)))))
COND_EVAL(true, x[3], y[3], z[3]) → EVAL(plus_int(x[3], y[3]), minus_int(y[3], pos(s(s(0)))), z[3])
The TRS R consists of the following rules:
greatereq_int(pos(x), pos(0)) → true
greatereq_int(neg(0), pos(0)) → true
greatereq_int(neg(s(x)), pos(0)) → false
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(neg(x), pos(y)) → minus_nat(y, x)
plus_int(neg(x), neg(y)) → neg(plus_nat(x, y))
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
The set Q consists of the following terms:
Cond_eval(true, x0, x1, x2)
eval(x0, x1, x2)
Cond_eval1(true, x0, x1, x2)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].
Cond_eval(true, x0, x1, x2)
eval(x0, x1, x2)
Cond_eval1(true, x0, x1, x2)
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDPtoQDPProof
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Narrowing
Q DP problem:
The TRS P consists of the following rules:
EVAL(x[0], y[0], z[0]) → COND_EVAL(greatereq_int(x[0], pos(0)), x[0], y[0], z[0])
EVAL(x[1], y[1], z[1]) → COND_EVAL1(greatereq_int(x[1], pos(0)), x[1], y[1], z[1])
COND_EVAL1(true, x[2], y[2], z[2]) → EVAL(plus_int(x[2], z[2]), plus_int(pos(s(0)), y[2]), minus_int(z[2], pos(s(s(0)))))
COND_EVAL(true, x[3], y[3], z[3]) → EVAL(plus_int(x[3], y[3]), minus_int(y[3], pos(s(s(0)))), z[3])
The TRS R consists of the following rules:
greatereq_int(pos(x), pos(0)) → true
greatereq_int(neg(0), pos(0)) → true
greatereq_int(neg(s(x)), pos(0)) → false
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(neg(x), pos(y)) → minus_nat(y, x)
plus_int(neg(x), neg(y)) → neg(plus_nat(x, y))
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
The set Q consists of the following terms:
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
We have to consider all minimal (P,Q,R)-chains.
By narrowing [LPAR04] the rule EVAL(x[0], y[0], z[0]) → COND_EVAL(greatereq_int(x[0], pos(0)), x[0], y[0], z[0]) at position [0] we obtained the following new rules [LPAR04]:
EVAL(neg(s(x0)), y1, y2) → COND_EVAL(false, neg(s(x0)), y1, y2)
EVAL(neg(0), y1, y2) → COND_EVAL(true, neg(0), y1, y2)
EVAL(pos(x0), y1, y2) → COND_EVAL(true, pos(x0), y1, y2)
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDPtoQDPProof
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
Q DP problem:
The TRS P consists of the following rules:
EVAL(x[1], y[1], z[1]) → COND_EVAL1(greatereq_int(x[1], pos(0)), x[1], y[1], z[1])
COND_EVAL1(true, x[2], y[2], z[2]) → EVAL(plus_int(x[2], z[2]), plus_int(pos(s(0)), y[2]), minus_int(z[2], pos(s(s(0)))))
COND_EVAL(true, x[3], y[3], z[3]) → EVAL(plus_int(x[3], y[3]), minus_int(y[3], pos(s(s(0)))), z[3])
EVAL(neg(s(x0)), y1, y2) → COND_EVAL(false, neg(s(x0)), y1, y2)
EVAL(neg(0), y1, y2) → COND_EVAL(true, neg(0), y1, y2)
EVAL(pos(x0), y1, y2) → COND_EVAL(true, pos(x0), y1, y2)
The TRS R consists of the following rules:
greatereq_int(pos(x), pos(0)) → true
greatereq_int(neg(0), pos(0)) → true
greatereq_int(neg(s(x)), pos(0)) → false
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(neg(x), pos(y)) → minus_nat(y, x)
plus_int(neg(x), neg(y)) → neg(plus_nat(x, y))
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
The set Q consists of the following terms:
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDPtoQDPProof
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
Q DP problem:
The TRS P consists of the following rules:
COND_EVAL1(true, x[2], y[2], z[2]) → EVAL(plus_int(x[2], z[2]), plus_int(pos(s(0)), y[2]), minus_int(z[2], pos(s(s(0)))))
EVAL(x[1], y[1], z[1]) → COND_EVAL1(greatereq_int(x[1], pos(0)), x[1], y[1], z[1])
EVAL(neg(0), y1, y2) → COND_EVAL(true, neg(0), y1, y2)
COND_EVAL(true, x[3], y[3], z[3]) → EVAL(plus_int(x[3], y[3]), minus_int(y[3], pos(s(s(0)))), z[3])
EVAL(pos(x0), y1, y2) → COND_EVAL(true, pos(x0), y1, y2)
The TRS R consists of the following rules:
greatereq_int(pos(x), pos(0)) → true
greatereq_int(neg(0), pos(0)) → true
greatereq_int(neg(s(x)), pos(0)) → false
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(neg(x), pos(y)) → minus_nat(y, x)
plus_int(neg(x), neg(y)) → neg(plus_nat(x, y))
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
The set Q consists of the following terms:
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
We have to consider all minimal (P,Q,R)-chains.
By narrowing [LPAR04] the rule EVAL(x[1], y[1], z[1]) → COND_EVAL1(greatereq_int(x[1], pos(0)), x[1], y[1], z[1]) at position [0] we obtained the following new rules [LPAR04]:
EVAL(neg(0), y1, y2) → COND_EVAL1(true, neg(0), y1, y2)
EVAL(neg(s(x0)), y1, y2) → COND_EVAL1(false, neg(s(x0)), y1, y2)
EVAL(pos(x0), y1, y2) → COND_EVAL1(true, pos(x0), y1, y2)
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDPtoQDPProof
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
Q DP problem:
The TRS P consists of the following rules:
COND_EVAL1(true, x[2], y[2], z[2]) → EVAL(plus_int(x[2], z[2]), plus_int(pos(s(0)), y[2]), minus_int(z[2], pos(s(s(0)))))
EVAL(neg(0), y1, y2) → COND_EVAL(true, neg(0), y1, y2)
COND_EVAL(true, x[3], y[3], z[3]) → EVAL(plus_int(x[3], y[3]), minus_int(y[3], pos(s(s(0)))), z[3])
EVAL(pos(x0), y1, y2) → COND_EVAL(true, pos(x0), y1, y2)
EVAL(neg(0), y1, y2) → COND_EVAL1(true, neg(0), y1, y2)
EVAL(neg(s(x0)), y1, y2) → COND_EVAL1(false, neg(s(x0)), y1, y2)
EVAL(pos(x0), y1, y2) → COND_EVAL1(true, pos(x0), y1, y2)
The TRS R consists of the following rules:
greatereq_int(pos(x), pos(0)) → true
greatereq_int(neg(0), pos(0)) → true
greatereq_int(neg(s(x)), pos(0)) → false
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(neg(x), pos(y)) → minus_nat(y, x)
plus_int(neg(x), neg(y)) → neg(plus_nat(x, y))
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
The set Q consists of the following terms:
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDPtoQDPProof
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ UsableRulesProof
Q DP problem:
The TRS P consists of the following rules:
EVAL(neg(0), y1, y2) → COND_EVAL(true, neg(0), y1, y2)
COND_EVAL(true, x[3], y[3], z[3]) → EVAL(plus_int(x[3], y[3]), minus_int(y[3], pos(s(s(0)))), z[3])
EVAL(pos(x0), y1, y2) → COND_EVAL(true, pos(x0), y1, y2)
EVAL(neg(0), y1, y2) → COND_EVAL1(true, neg(0), y1, y2)
COND_EVAL1(true, x[2], y[2], z[2]) → EVAL(plus_int(x[2], z[2]), plus_int(pos(s(0)), y[2]), minus_int(z[2], pos(s(s(0)))))
EVAL(pos(x0), y1, y2) → COND_EVAL1(true, pos(x0), y1, y2)
The TRS R consists of the following rules:
greatereq_int(pos(x), pos(0)) → true
greatereq_int(neg(0), pos(0)) → true
greatereq_int(neg(s(x)), pos(0)) → false
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(neg(x), pos(y)) → minus_nat(y, x)
plus_int(neg(x), neg(y)) → neg(plus_nat(x, y))
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
The set Q consists of the following terms:
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDPtoQDPProof
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
Q DP problem:
The TRS P consists of the following rules:
EVAL(neg(0), y1, y2) → COND_EVAL(true, neg(0), y1, y2)
COND_EVAL(true, x[3], y[3], z[3]) → EVAL(plus_int(x[3], y[3]), minus_int(y[3], pos(s(s(0)))), z[3])
EVAL(pos(x0), y1, y2) → COND_EVAL(true, pos(x0), y1, y2)
EVAL(neg(0), y1, y2) → COND_EVAL1(true, neg(0), y1, y2)
COND_EVAL1(true, x[2], y[2], z[2]) → EVAL(plus_int(x[2], z[2]), plus_int(pos(s(0)), y[2]), minus_int(z[2], pos(s(s(0)))))
EVAL(pos(x0), y1, y2) → COND_EVAL1(true, pos(x0), y1, y2)
The TRS R consists of the following rules:
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(neg(x), pos(y)) → minus_nat(y, x)
plus_int(neg(x), neg(y)) → neg(plus_nat(x, y))
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
The set Q consists of the following terms:
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDPtoQDPProof
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ QDPOrderProof
Q DP problem:
The TRS P consists of the following rules:
EVAL(neg(0), y1, y2) → COND_EVAL(true, neg(0), y1, y2)
COND_EVAL(true, x[3], y[3], z[3]) → EVAL(plus_int(x[3], y[3]), minus_int(y[3], pos(s(s(0)))), z[3])
EVAL(pos(x0), y1, y2) → COND_EVAL(true, pos(x0), y1, y2)
EVAL(neg(0), y1, y2) → COND_EVAL1(true, neg(0), y1, y2)
COND_EVAL1(true, x[2], y[2], z[2]) → EVAL(plus_int(x[2], z[2]), plus_int(pos(s(0)), y[2]), minus_int(z[2], pos(s(s(0)))))
EVAL(pos(x0), y1, y2) → COND_EVAL1(true, pos(x0), y1, y2)
The TRS R consists of the following rules:
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(neg(x), pos(y)) → minus_nat(y, x)
plus_int(neg(x), neg(y)) → neg(plus_nat(x, y))
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
The set Q consists of the following terms:
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [LPAR04].
The following pairs can be oriented strictly and are deleted.
EVAL(neg(0), y1, y2) → COND_EVAL(true, neg(0), y1, y2)
The remaining pairs can at least be oriented weakly.
COND_EVAL(true, x[3], y[3], z[3]) → EVAL(plus_int(x[3], y[3]), minus_int(y[3], pos(s(s(0)))), z[3])
EVAL(pos(x0), y1, y2) → COND_EVAL(true, pos(x0), y1, y2)
EVAL(neg(0), y1, y2) → COND_EVAL1(true, neg(0), y1, y2)
COND_EVAL1(true, x[2], y[2], z[2]) → EVAL(plus_int(x[2], z[2]), plus_int(pos(s(0)), y[2]), minus_int(z[2], pos(s(s(0)))))
EVAL(pos(x0), y1, y2) → COND_EVAL1(true, pos(x0), y1, y2)
Used ordering: Matrix interpretation [MATRO]:
POL(EVAL(x1, x2, x3)) = | | · | x1 | + | | + | | · | x2 | + | | · | x3 |
POL(COND_EVAL(x1, x2, x3, x4)) = | | · | x1 | + | | + | | · | x2 | + | | · | x3 | + | | · | x4 |
POL(plus_int(x1, x2)) = | | · | x1 | + | | + | | · | x2 |
POL(minus_int(x1, x2)) = | | · | x1 | + | | + | | · | x2 |
POL(COND_EVAL1(x1, x2, x3, x4)) = | | · | x1 | + | | + | | · | x2 | + | | · | x3 | + | | · | x4 |
POL(minus_nat(x1, x2)) = | | · | x1 | + | | + | | · | x2 |
POL(plus_nat(x1, x2)) = | | · | x1 | + | | + | | · | x2 |
The following usable rules [FROCOS05] were oriented:
plus_int(neg(x), pos(y)) → minus_nat(y, x)
minus_nat(s(x), s(y)) → minus_nat(x, y)
plus_int(neg(x), neg(y)) → neg(plus_nat(x, y))
plus_int(pos(x), neg(y)) → minus_nat(x, y)
minus_nat(0, 0) → pos(0)
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(0, s(y)) → neg(s(y))
minus_int(pos(x), pos(y)) → minus_nat(x, y)
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDPtoQDPProof
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
Q DP problem:
The TRS P consists of the following rules:
COND_EVAL(true, x[3], y[3], z[3]) → EVAL(plus_int(x[3], y[3]), minus_int(y[3], pos(s(s(0)))), z[3])
EVAL(pos(x0), y1, y2) → COND_EVAL(true, pos(x0), y1, y2)
EVAL(neg(0), y1, y2) → COND_EVAL1(true, neg(0), y1, y2)
COND_EVAL1(true, x[2], y[2], z[2]) → EVAL(plus_int(x[2], z[2]), plus_int(pos(s(0)), y[2]), minus_int(z[2], pos(s(s(0)))))
EVAL(pos(x0), y1, y2) → COND_EVAL1(true, pos(x0), y1, y2)
The TRS R consists of the following rules:
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(neg(x), pos(y)) → minus_nat(y, x)
plus_int(neg(x), neg(y)) → neg(plus_nat(x, y))
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
The set Q consists of the following terms:
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [LPAR04].
The following pairs can be oriented strictly and are deleted.
EVAL(neg(0), y1, y2) → COND_EVAL1(true, neg(0), y1, y2)
The remaining pairs can at least be oriented weakly.
COND_EVAL(true, x[3], y[3], z[3]) → EVAL(plus_int(x[3], y[3]), minus_int(y[3], pos(s(s(0)))), z[3])
EVAL(pos(x0), y1, y2) → COND_EVAL(true, pos(x0), y1, y2)
COND_EVAL1(true, x[2], y[2], z[2]) → EVAL(plus_int(x[2], z[2]), plus_int(pos(s(0)), y[2]), minus_int(z[2], pos(s(s(0)))))
EVAL(pos(x0), y1, y2) → COND_EVAL1(true, pos(x0), y1, y2)
Used ordering: Matrix interpretation [MATRO]:
POL(COND_EVAL(x1, x2, x3, x4)) = | | · | x1 | + | | + | | · | x2 | + | | · | x3 | + | | · | x4 |
POL(EVAL(x1, x2, x3)) = | | · | x1 | + | | + | | · | x2 | + | | · | x3 |
POL(plus_int(x1, x2)) = | | · | x1 | + | | + | | · | x2 |
POL(minus_int(x1, x2)) = | | · | x1 | + | | + | | · | x2 |
POL(COND_EVAL1(x1, x2, x3, x4)) = | | · | x1 | + | | + | | · | x2 | + | | · | x3 | + | | · | x4 |
POL(minus_nat(x1, x2)) = | | · | x1 | + | | + | | · | x2 |
POL(plus_nat(x1, x2)) = | | · | x1 | + | | + | | · | x2 |
The following usable rules [FROCOS05] were oriented:
plus_int(neg(x), pos(y)) → minus_nat(y, x)
minus_nat(s(x), s(y)) → minus_nat(x, y)
plus_int(neg(x), neg(y)) → neg(plus_nat(x, y))
plus_int(pos(x), neg(y)) → minus_nat(x, y)
minus_nat(0, 0) → pos(0)
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(0, s(y)) → neg(s(y))
minus_int(pos(x), pos(y)) → minus_nat(x, y)
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDPtoQDPProof
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ Narrowing
Q DP problem:
The TRS P consists of the following rules:
COND_EVAL(true, x[3], y[3], z[3]) → EVAL(plus_int(x[3], y[3]), minus_int(y[3], pos(s(s(0)))), z[3])
EVAL(pos(x0), y1, y2) → COND_EVAL(true, pos(x0), y1, y2)
COND_EVAL1(true, x[2], y[2], z[2]) → EVAL(plus_int(x[2], z[2]), plus_int(pos(s(0)), y[2]), minus_int(z[2], pos(s(s(0)))))
EVAL(pos(x0), y1, y2) → COND_EVAL1(true, pos(x0), y1, y2)
The TRS R consists of the following rules:
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(neg(x), pos(y)) → minus_nat(y, x)
plus_int(neg(x), neg(y)) → neg(plus_nat(x, y))
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
The set Q consists of the following terms:
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
We have to consider all minimal (P,Q,R)-chains.
By narrowing [LPAR04] the rule COND_EVAL(true, x[3], y[3], z[3]) → EVAL(plus_int(x[3], y[3]), minus_int(y[3], pos(s(s(0)))), z[3]) at position [0] we obtained the following new rules [LPAR04]:
COND_EVAL(true, neg(x0), pos(x1), y2) → EVAL(minus_nat(x1, x0), minus_int(pos(x1), pos(s(s(0)))), y2)
COND_EVAL(true, neg(x0), neg(x1), y2) → EVAL(neg(plus_nat(x0, x1)), minus_int(neg(x1), pos(s(s(0)))), y2)
COND_EVAL(true, pos(x0), neg(x1), y2) → EVAL(minus_nat(x0, x1), minus_int(neg(x1), pos(s(s(0)))), y2)
COND_EVAL(true, pos(x0), pos(x1), y2) → EVAL(pos(plus_nat(x0, x1)), minus_int(pos(x1), pos(s(s(0)))), y2)
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDPtoQDPProof
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
Q DP problem:
The TRS P consists of the following rules:
EVAL(pos(x0), y1, y2) → COND_EVAL(true, pos(x0), y1, y2)
COND_EVAL1(true, x[2], y[2], z[2]) → EVAL(plus_int(x[2], z[2]), plus_int(pos(s(0)), y[2]), minus_int(z[2], pos(s(s(0)))))
EVAL(pos(x0), y1, y2) → COND_EVAL1(true, pos(x0), y1, y2)
COND_EVAL(true, neg(x0), pos(x1), y2) → EVAL(minus_nat(x1, x0), minus_int(pos(x1), pos(s(s(0)))), y2)
COND_EVAL(true, neg(x0), neg(x1), y2) → EVAL(neg(plus_nat(x0, x1)), minus_int(neg(x1), pos(s(s(0)))), y2)
COND_EVAL(true, pos(x0), neg(x1), y2) → EVAL(minus_nat(x0, x1), minus_int(neg(x1), pos(s(s(0)))), y2)
COND_EVAL(true, pos(x0), pos(x1), y2) → EVAL(pos(plus_nat(x0, x1)), minus_int(pos(x1), pos(s(s(0)))), y2)
The TRS R consists of the following rules:
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(neg(x), pos(y)) → minus_nat(y, x)
plus_int(neg(x), neg(y)) → neg(plus_nat(x, y))
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
The set Q consists of the following terms:
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 2 less nodes.
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDPtoQDPProof
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
Q DP problem:
The TRS P consists of the following rules:
COND_EVAL(true, pos(x0), neg(x1), y2) → EVAL(minus_nat(x0, x1), minus_int(neg(x1), pos(s(s(0)))), y2)
EVAL(pos(x0), y1, y2) → COND_EVAL(true, pos(x0), y1, y2)
COND_EVAL(true, pos(x0), pos(x1), y2) → EVAL(pos(plus_nat(x0, x1)), minus_int(pos(x1), pos(s(s(0)))), y2)
EVAL(pos(x0), y1, y2) → COND_EVAL1(true, pos(x0), y1, y2)
COND_EVAL1(true, x[2], y[2], z[2]) → EVAL(plus_int(x[2], z[2]), plus_int(pos(s(0)), y[2]), minus_int(z[2], pos(s(s(0)))))
The TRS R consists of the following rules:
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(neg(x), pos(y)) → minus_nat(y, x)
plus_int(neg(x), neg(y)) → neg(plus_nat(x, y))
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
The set Q consists of the following terms:
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
We have to consider all minimal (P,Q,R)-chains.
By rewriting [LPAR04] the rule COND_EVAL(true, pos(x0), neg(x1), y2) → EVAL(minus_nat(x0, x1), minus_int(neg(x1), pos(s(s(0)))), y2) at position [1] we obtained the following new rules [LPAR04]:
COND_EVAL(true, pos(x0), neg(x1), y2) → EVAL(minus_nat(x0, x1), neg(plus_nat(x1, s(s(0)))), y2)
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDPtoQDPProof
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
Q DP problem:
The TRS P consists of the following rules:
EVAL(pos(x0), y1, y2) → COND_EVAL(true, pos(x0), y1, y2)
COND_EVAL(true, pos(x0), pos(x1), y2) → EVAL(pos(plus_nat(x0, x1)), minus_int(pos(x1), pos(s(s(0)))), y2)
EVAL(pos(x0), y1, y2) → COND_EVAL1(true, pos(x0), y1, y2)
COND_EVAL1(true, x[2], y[2], z[2]) → EVAL(plus_int(x[2], z[2]), plus_int(pos(s(0)), y[2]), minus_int(z[2], pos(s(s(0)))))
COND_EVAL(true, pos(x0), neg(x1), y2) → EVAL(minus_nat(x0, x1), neg(plus_nat(x1, s(s(0)))), y2)
The TRS R consists of the following rules:
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(neg(x), pos(y)) → minus_nat(y, x)
plus_int(neg(x), neg(y)) → neg(plus_nat(x, y))
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
The set Q consists of the following terms:
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
We have to consider all minimal (P,Q,R)-chains.
By rewriting [LPAR04] the rule COND_EVAL(true, pos(x0), pos(x1), y2) → EVAL(pos(plus_nat(x0, x1)), minus_int(pos(x1), pos(s(s(0)))), y2) at position [1] we obtained the following new rules [LPAR04]:
COND_EVAL(true, pos(x0), pos(x1), y2) → EVAL(pos(plus_nat(x0, x1)), minus_nat(x1, s(s(0))), y2)
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDPtoQDPProof
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ Narrowing
Q DP problem:
The TRS P consists of the following rules:
EVAL(pos(x0), y1, y2) → COND_EVAL(true, pos(x0), y1, y2)
EVAL(pos(x0), y1, y2) → COND_EVAL1(true, pos(x0), y1, y2)
COND_EVAL1(true, x[2], y[2], z[2]) → EVAL(plus_int(x[2], z[2]), plus_int(pos(s(0)), y[2]), minus_int(z[2], pos(s(s(0)))))
COND_EVAL(true, pos(x0), neg(x1), y2) → EVAL(minus_nat(x0, x1), neg(plus_nat(x1, s(s(0)))), y2)
COND_EVAL(true, pos(x0), pos(x1), y2) → EVAL(pos(plus_nat(x0, x1)), minus_nat(x1, s(s(0))), y2)
The TRS R consists of the following rules:
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(neg(x), pos(y)) → minus_nat(y, x)
plus_int(neg(x), neg(y)) → neg(plus_nat(x, y))
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
The set Q consists of the following terms:
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
We have to consider all minimal (P,Q,R)-chains.
By narrowing [LPAR04] the rule COND_EVAL1(true, x[2], y[2], z[2]) → EVAL(plus_int(x[2], z[2]), plus_int(pos(s(0)), y[2]), minus_int(z[2], pos(s(s(0))))) at position [0] we obtained the following new rules [LPAR04]:
COND_EVAL1(true, neg(x0), y1, pos(x1)) → EVAL(minus_nat(x1, x0), plus_int(pos(s(0)), y1), minus_int(pos(x1), pos(s(s(0)))))
COND_EVAL1(true, pos(x0), y1, pos(x1)) → EVAL(pos(plus_nat(x0, x1)), plus_int(pos(s(0)), y1), minus_int(pos(x1), pos(s(s(0)))))
COND_EVAL1(true, pos(x0), y1, neg(x1)) → EVAL(minus_nat(x0, x1), plus_int(pos(s(0)), y1), minus_int(neg(x1), pos(s(s(0)))))
COND_EVAL1(true, neg(x0), y1, neg(x1)) → EVAL(neg(plus_nat(x0, x1)), plus_int(pos(s(0)), y1), minus_int(neg(x1), pos(s(s(0)))))
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDPtoQDPProof
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
Q DP problem:
The TRS P consists of the following rules:
EVAL(pos(x0), y1, y2) → COND_EVAL(true, pos(x0), y1, y2)
EVAL(pos(x0), y1, y2) → COND_EVAL1(true, pos(x0), y1, y2)
COND_EVAL(true, pos(x0), neg(x1), y2) → EVAL(minus_nat(x0, x1), neg(plus_nat(x1, s(s(0)))), y2)
COND_EVAL(true, pos(x0), pos(x1), y2) → EVAL(pos(plus_nat(x0, x1)), minus_nat(x1, s(s(0))), y2)
COND_EVAL1(true, neg(x0), y1, pos(x1)) → EVAL(minus_nat(x1, x0), plus_int(pos(s(0)), y1), minus_int(pos(x1), pos(s(s(0)))))
COND_EVAL1(true, pos(x0), y1, pos(x1)) → EVAL(pos(plus_nat(x0, x1)), plus_int(pos(s(0)), y1), minus_int(pos(x1), pos(s(s(0)))))
COND_EVAL1(true, pos(x0), y1, neg(x1)) → EVAL(minus_nat(x0, x1), plus_int(pos(s(0)), y1), minus_int(neg(x1), pos(s(s(0)))))
COND_EVAL1(true, neg(x0), y1, neg(x1)) → EVAL(neg(plus_nat(x0, x1)), plus_int(pos(s(0)), y1), minus_int(neg(x1), pos(s(s(0)))))
The TRS R consists of the following rules:
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(neg(x), pos(y)) → minus_nat(y, x)
plus_int(neg(x), neg(y)) → neg(plus_nat(x, y))
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
The set Q consists of the following terms:
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 2 less nodes.
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDPtoQDPProof
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ UsableRulesProof
Q DP problem:
The TRS P consists of the following rules:
COND_EVAL(true, pos(x0), neg(x1), y2) → EVAL(minus_nat(x0, x1), neg(plus_nat(x1, s(s(0)))), y2)
EVAL(pos(x0), y1, y2) → COND_EVAL(true, pos(x0), y1, y2)
COND_EVAL(true, pos(x0), pos(x1), y2) → EVAL(pos(plus_nat(x0, x1)), minus_nat(x1, s(s(0))), y2)
EVAL(pos(x0), y1, y2) → COND_EVAL1(true, pos(x0), y1, y2)
COND_EVAL1(true, pos(x0), y1, pos(x1)) → EVAL(pos(plus_nat(x0, x1)), plus_int(pos(s(0)), y1), minus_int(pos(x1), pos(s(s(0)))))
COND_EVAL1(true, pos(x0), y1, neg(x1)) → EVAL(minus_nat(x0, x1), plus_int(pos(s(0)), y1), minus_int(neg(x1), pos(s(s(0)))))
The TRS R consists of the following rules:
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(neg(x), pos(y)) → minus_nat(y, x)
plus_int(neg(x), neg(y)) → neg(plus_nat(x, y))
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
The set Q consists of the following terms:
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDPtoQDPProof
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ Rewriting
Q DP problem:
The TRS P consists of the following rules:
COND_EVAL(true, pos(x0), neg(x1), y2) → EVAL(minus_nat(x0, x1), neg(plus_nat(x1, s(s(0)))), y2)
EVAL(pos(x0), y1, y2) → COND_EVAL(true, pos(x0), y1, y2)
COND_EVAL(true, pos(x0), pos(x1), y2) → EVAL(pos(plus_nat(x0, x1)), minus_nat(x1, s(s(0))), y2)
EVAL(pos(x0), y1, y2) → COND_EVAL1(true, pos(x0), y1, y2)
COND_EVAL1(true, pos(x0), y1, pos(x1)) → EVAL(pos(plus_nat(x0, x1)), plus_int(pos(s(0)), y1), minus_int(pos(x1), pos(s(s(0)))))
COND_EVAL1(true, pos(x0), y1, neg(x1)) → EVAL(minus_nat(x0, x1), plus_int(pos(s(0)), y1), minus_int(neg(x1), pos(s(s(0)))))
The TRS R consists of the following rules:
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), s(y)) → minus_nat(x, y)
minus_nat(0, 0) → pos(0)
minus_nat(s(x), 0) → pos(s(x))
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
The set Q consists of the following terms:
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
We have to consider all minimal (P,Q,R)-chains.
By rewriting [LPAR04] the rule COND_EVAL1(true, pos(x0), y1, pos(x1)) → EVAL(pos(plus_nat(x0, x1)), plus_int(pos(s(0)), y1), minus_int(pos(x1), pos(s(s(0))))) at position [2] we obtained the following new rules [LPAR04]:
COND_EVAL1(true, pos(x0), y1, pos(x1)) → EVAL(pos(plus_nat(x0, x1)), plus_int(pos(s(0)), y1), minus_nat(x1, s(s(0))))
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDPtoQDPProof
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ Rewriting
↳ QDP
↳ UsableRulesProof
Q DP problem:
The TRS P consists of the following rules:
COND_EVAL(true, pos(x0), neg(x1), y2) → EVAL(minus_nat(x0, x1), neg(plus_nat(x1, s(s(0)))), y2)
EVAL(pos(x0), y1, y2) → COND_EVAL(true, pos(x0), y1, y2)
COND_EVAL(true, pos(x0), pos(x1), y2) → EVAL(pos(plus_nat(x0, x1)), minus_nat(x1, s(s(0))), y2)
EVAL(pos(x0), y1, y2) → COND_EVAL1(true, pos(x0), y1, y2)
COND_EVAL1(true, pos(x0), y1, neg(x1)) → EVAL(minus_nat(x0, x1), plus_int(pos(s(0)), y1), minus_int(neg(x1), pos(s(s(0)))))
COND_EVAL1(true, pos(x0), y1, pos(x1)) → EVAL(pos(plus_nat(x0, x1)), plus_int(pos(s(0)), y1), minus_nat(x1, s(s(0))))
The TRS R consists of the following rules:
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), s(y)) → minus_nat(x, y)
minus_nat(0, 0) → pos(0)
minus_nat(s(x), 0) → pos(s(x))
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
The set Q consists of the following terms:
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDPtoQDPProof
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ Rewriting
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ Rewriting
Q DP problem:
The TRS P consists of the following rules:
COND_EVAL(true, pos(x0), neg(x1), y2) → EVAL(minus_nat(x0, x1), neg(plus_nat(x1, s(s(0)))), y2)
EVAL(pos(x0), y1, y2) → COND_EVAL(true, pos(x0), y1, y2)
COND_EVAL(true, pos(x0), pos(x1), y2) → EVAL(pos(plus_nat(x0, x1)), minus_nat(x1, s(s(0))), y2)
EVAL(pos(x0), y1, y2) → COND_EVAL1(true, pos(x0), y1, y2)
COND_EVAL1(true, pos(x0), y1, neg(x1)) → EVAL(minus_nat(x0, x1), plus_int(pos(s(0)), y1), minus_int(neg(x1), pos(s(s(0)))))
COND_EVAL1(true, pos(x0), y1, pos(x1)) → EVAL(pos(plus_nat(x0, x1)), plus_int(pos(s(0)), y1), minus_nat(x1, s(s(0))))
The TRS R consists of the following rules:
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), s(y)) → minus_nat(x, y)
minus_nat(0, 0) → pos(0)
minus_nat(s(x), 0) → pos(s(x))
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
The set Q consists of the following terms:
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
We have to consider all minimal (P,Q,R)-chains.
By rewriting [LPAR04] the rule COND_EVAL1(true, pos(x0), y1, neg(x1)) → EVAL(minus_nat(x0, x1), plus_int(pos(s(0)), y1), minus_int(neg(x1), pos(s(s(0))))) at position [2] we obtained the following new rules [LPAR04]:
COND_EVAL1(true, pos(x0), y1, neg(x1)) → EVAL(minus_nat(x0, x1), plus_int(pos(s(0)), y1), neg(plus_nat(x1, s(s(0)))))
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDPtoQDPProof
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ Rewriting
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ Rewriting
↳ QDP
↳ UsableRulesProof
Q DP problem:
The TRS P consists of the following rules:
COND_EVAL(true, pos(x0), neg(x1), y2) → EVAL(minus_nat(x0, x1), neg(plus_nat(x1, s(s(0)))), y2)
EVAL(pos(x0), y1, y2) → COND_EVAL(true, pos(x0), y1, y2)
COND_EVAL(true, pos(x0), pos(x1), y2) → EVAL(pos(plus_nat(x0, x1)), minus_nat(x1, s(s(0))), y2)
EVAL(pos(x0), y1, y2) → COND_EVAL1(true, pos(x0), y1, y2)
COND_EVAL1(true, pos(x0), y1, pos(x1)) → EVAL(pos(plus_nat(x0, x1)), plus_int(pos(s(0)), y1), minus_nat(x1, s(s(0))))
COND_EVAL1(true, pos(x0), y1, neg(x1)) → EVAL(minus_nat(x0, x1), plus_int(pos(s(0)), y1), neg(plus_nat(x1, s(s(0)))))
The TRS R consists of the following rules:
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), s(y)) → minus_nat(x, y)
minus_nat(0, 0) → pos(0)
minus_nat(s(x), 0) → pos(s(x))
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
The set Q consists of the following terms:
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDPtoQDPProof
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ Rewriting
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ Rewriting
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
Q DP problem:
The TRS P consists of the following rules:
COND_EVAL(true, pos(x0), neg(x1), y2) → EVAL(minus_nat(x0, x1), neg(plus_nat(x1, s(s(0)))), y2)
EVAL(pos(x0), y1, y2) → COND_EVAL(true, pos(x0), y1, y2)
COND_EVAL(true, pos(x0), pos(x1), y2) → EVAL(pos(plus_nat(x0, x1)), minus_nat(x1, s(s(0))), y2)
EVAL(pos(x0), y1, y2) → COND_EVAL1(true, pos(x0), y1, y2)
COND_EVAL1(true, pos(x0), y1, pos(x1)) → EVAL(pos(plus_nat(x0, x1)), plus_int(pos(s(0)), y1), minus_nat(x1, s(s(0))))
COND_EVAL1(true, pos(x0), y1, neg(x1)) → EVAL(minus_nat(x0, x1), plus_int(pos(s(0)), y1), neg(plus_nat(x1, s(s(0)))))
The TRS R consists of the following rules:
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), s(y)) → minus_nat(x, y)
minus_nat(0, 0) → pos(0)
minus_nat(s(x), 0) → pos(s(x))
The set Q consists of the following terms:
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDPtoQDPProof
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ Rewriting
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ Rewriting
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ ForwardInstantiation
Q DP problem:
The TRS P consists of the following rules:
COND_EVAL(true, pos(x0), neg(x1), y2) → EVAL(minus_nat(x0, x1), neg(plus_nat(x1, s(s(0)))), y2)
EVAL(pos(x0), y1, y2) → COND_EVAL(true, pos(x0), y1, y2)
COND_EVAL(true, pos(x0), pos(x1), y2) → EVAL(pos(plus_nat(x0, x1)), minus_nat(x1, s(s(0))), y2)
EVAL(pos(x0), y1, y2) → COND_EVAL1(true, pos(x0), y1, y2)
COND_EVAL1(true, pos(x0), y1, pos(x1)) → EVAL(pos(plus_nat(x0, x1)), plus_int(pos(s(0)), y1), minus_nat(x1, s(s(0))))
COND_EVAL1(true, pos(x0), y1, neg(x1)) → EVAL(minus_nat(x0, x1), plus_int(pos(s(0)), y1), neg(plus_nat(x1, s(s(0)))))
The TRS R consists of the following rules:
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), s(y)) → minus_nat(x, y)
minus_nat(0, 0) → pos(0)
minus_nat(s(x), 0) → pos(s(x))
The set Q consists of the following terms:
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
We have to consider all minimal (P,Q,R)-chains.
By forward instantiating [JAR06] the rule EVAL(pos(x0), y1, y2) → COND_EVAL(true, pos(x0), y1, y2) we obtained the following new rules [LPAR04]:
EVAL(pos(x0), neg(y_1), x2) → COND_EVAL(true, pos(x0), neg(y_1), x2)
EVAL(pos(x0), pos(y_1), x2) → COND_EVAL(true, pos(x0), pos(y_1), x2)
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDPtoQDPProof
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ Rewriting
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ Rewriting
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ ForwardInstantiation
↳ QDP
↳ ForwardInstantiation
Q DP problem:
The TRS P consists of the following rules:
COND_EVAL(true, pos(x0), neg(x1), y2) → EVAL(minus_nat(x0, x1), neg(plus_nat(x1, s(s(0)))), y2)
COND_EVAL(true, pos(x0), pos(x1), y2) → EVAL(pos(plus_nat(x0, x1)), minus_nat(x1, s(s(0))), y2)
EVAL(pos(x0), y1, y2) → COND_EVAL1(true, pos(x0), y1, y2)
COND_EVAL1(true, pos(x0), y1, pos(x1)) → EVAL(pos(plus_nat(x0, x1)), plus_int(pos(s(0)), y1), minus_nat(x1, s(s(0))))
COND_EVAL1(true, pos(x0), y1, neg(x1)) → EVAL(minus_nat(x0, x1), plus_int(pos(s(0)), y1), neg(plus_nat(x1, s(s(0)))))
EVAL(pos(x0), neg(y_1), x2) → COND_EVAL(true, pos(x0), neg(y_1), x2)
EVAL(pos(x0), pos(y_1), x2) → COND_EVAL(true, pos(x0), pos(y_1), x2)
The TRS R consists of the following rules:
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), s(y)) → minus_nat(x, y)
minus_nat(0, 0) → pos(0)
minus_nat(s(x), 0) → pos(s(x))
The set Q consists of the following terms:
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
We have to consider all minimal (P,Q,R)-chains.
By forward instantiating [JAR06] the rule EVAL(pos(x0), y1, y2) → COND_EVAL1(true, pos(x0), y1, y2) we obtained the following new rules [LPAR04]:
EVAL(pos(x0), x1, neg(y_2)) → COND_EVAL1(true, pos(x0), x1, neg(y_2))
EVAL(pos(x0), x1, pos(y_2)) → COND_EVAL1(true, pos(x0), x1, pos(y_2))
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDPtoQDPProof
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ Rewriting
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ Rewriting
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ ForwardInstantiation
↳ QDP
↳ ForwardInstantiation
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
COND_EVAL(true, pos(x0), neg(x1), y2) → EVAL(minus_nat(x0, x1), neg(plus_nat(x1, s(s(0)))), y2)
COND_EVAL(true, pos(x0), pos(x1), y2) → EVAL(pos(plus_nat(x0, x1)), minus_nat(x1, s(s(0))), y2)
COND_EVAL1(true, pos(x0), y1, pos(x1)) → EVAL(pos(plus_nat(x0, x1)), plus_int(pos(s(0)), y1), minus_nat(x1, s(s(0))))
COND_EVAL1(true, pos(x0), y1, neg(x1)) → EVAL(minus_nat(x0, x1), plus_int(pos(s(0)), y1), neg(plus_nat(x1, s(s(0)))))
EVAL(pos(x0), neg(y_1), x2) → COND_EVAL(true, pos(x0), neg(y_1), x2)
EVAL(pos(x0), pos(y_1), x2) → COND_EVAL(true, pos(x0), pos(y_1), x2)
EVAL(pos(x0), x1, neg(y_2)) → COND_EVAL1(true, pos(x0), x1, neg(y_2))
EVAL(pos(x0), x1, pos(y_2)) → COND_EVAL1(true, pos(x0), x1, pos(y_2))
The TRS R consists of the following rules:
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), s(y)) → minus_nat(x, y)
minus_nat(0, 0) → pos(0)
minus_nat(s(x), 0) → pos(s(x))
The set Q consists of the following terms:
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
We have to consider all minimal (P,Q,R)-chains.