Termination of the given ITRSProblem could not be shown:



ITRS
  ↳ ITRStoIDPProof

ITRS problem:
The following domains are used:

z

The TRS R consists of the following rules:

Cond_eval(TRUE, x, y, z) → eval(+@z(x, y), -@z(y, 2@z), z)
eval(x, y, z) → Cond_eval1(>=@z(x, 0@z), x, y, z)
eval(x, y, z) → Cond_eval(>=@z(x, 0@z), x, y, z)
Cond_eval1(TRUE, x, y, z) → eval(+@z(x, z), +@z(y, 1@z), -@z(z, 2@z))

The set Q consists of the following terms:

Cond_eval(TRUE, x0, x1, x2)
eval(x0, x1, x2)
Cond_eval1(TRUE, x0, x1, x2)


Added dependency pairs

↳ ITRS
  ↳ ITRStoIDPProof
IDP
      ↳ UsableRulesProof

I DP problem:
The following domains are used:

z

The ITRS R consists of the following rules:

Cond_eval(TRUE, x, y, z) → eval(+@z(x, y), -@z(y, 2@z), z)
eval(x, y, z) → Cond_eval1(>=@z(x, 0@z), x, y, z)
eval(x, y, z) → Cond_eval(>=@z(x, 0@z), x, y, z)
Cond_eval1(TRUE, x, y, z) → eval(+@z(x, z), +@z(y, 1@z), -@z(z, 2@z))

The integer pair graph contains the following rules and edges:

(0): EVAL(x[0], y[0], z[0]) → COND_EVAL(>=@z(x[0], 0@z), x[0], y[0], z[0])
(1): EVAL(x[1], y[1], z[1]) → COND_EVAL1(>=@z(x[1], 0@z), x[1], y[1], z[1])
(2): COND_EVAL1(TRUE, x[2], y[2], z[2]) → EVAL(+@z(x[2], z[2]), +@z(y[2], 1@z), -@z(z[2], 2@z))
(3): COND_EVAL(TRUE, x[3], y[3], z[3]) → EVAL(+@z(x[3], y[3]), -@z(y[3], 2@z), z[3])

(0) -> (3), if ((z[0]* z[3])∧(x[0]* x[3])∧(y[0]* y[3])∧(>=@z(x[0], 0@z) →* TRUE))


(1) -> (2), if ((z[1]* z[2])∧(x[1]* x[2])∧(y[1]* y[2])∧(>=@z(x[1], 0@z) →* TRUE))


(2) -> (0), if ((+@z(y[2], 1@z) →* y[0])∧(-@z(z[2], 2@z) →* z[0])∧(+@z(x[2], z[2]) →* x[0]))


(2) -> (1), if ((+@z(y[2], 1@z) →* y[1])∧(-@z(z[2], 2@z) →* z[1])∧(+@z(x[2], z[2]) →* x[1]))


(3) -> (0), if ((-@z(y[3], 2@z) →* y[0])∧(z[3]* z[0])∧(+@z(x[3], y[3]) →* x[0]))


(3) -> (1), if ((-@z(y[3], 2@z) →* y[1])∧(z[3]* z[1])∧(+@z(x[3], y[3]) →* x[1]))



The set Q consists of the following terms:

Cond_eval(TRUE, x0, x1, x2)
eval(x0, x1, x2)
Cond_eval1(TRUE, x0, x1, x2)


As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

↳ ITRS
  ↳ ITRStoIDPProof
    ↳ IDP
      ↳ UsableRulesProof
IDP
          ↳ IDPtoQDPProof

I DP problem:
The following domains are used:

z

R is empty.
The integer pair graph contains the following rules and edges:

(0): EVAL(x[0], y[0], z[0]) → COND_EVAL(>=@z(x[0], 0@z), x[0], y[0], z[0])
(1): EVAL(x[1], y[1], z[1]) → COND_EVAL1(>=@z(x[1], 0@z), x[1], y[1], z[1])
(2): COND_EVAL1(TRUE, x[2], y[2], z[2]) → EVAL(+@z(x[2], z[2]), +@z(y[2], 1@z), -@z(z[2], 2@z))
(3): COND_EVAL(TRUE, x[3], y[3], z[3]) → EVAL(+@z(x[3], y[3]), -@z(y[3], 2@z), z[3])

(0) -> (3), if ((z[0]* z[3])∧(x[0]* x[3])∧(y[0]* y[3])∧(>=@z(x[0], 0@z) →* TRUE))


(1) -> (2), if ((z[1]* z[2])∧(x[1]* x[2])∧(y[1]* y[2])∧(>=@z(x[1], 0@z) →* TRUE))


(2) -> (0), if ((+@z(y[2], 1@z) →* y[0])∧(-@z(z[2], 2@z) →* z[0])∧(+@z(x[2], z[2]) →* x[0]))


(2) -> (1), if ((+@z(y[2], 1@z) →* y[1])∧(-@z(z[2], 2@z) →* z[1])∧(+@z(x[2], z[2]) →* x[1]))


(3) -> (0), if ((-@z(y[3], 2@z) →* y[0])∧(z[3]* z[0])∧(+@z(x[3], y[3]) →* x[0]))


(3) -> (1), if ((-@z(y[3], 2@z) →* y[1])∧(z[3]* z[1])∧(+@z(x[3], y[3]) →* x[1]))



The set Q consists of the following terms:

Cond_eval(TRUE, x0, x1, x2)
eval(x0, x1, x2)
Cond_eval1(TRUE, x0, x1, x2)


Represented integers and predefined function symbols by Terms

↳ ITRS
  ↳ ITRStoIDPProof
    ↳ IDP
      ↳ UsableRulesProof
        ↳ IDP
          ↳ IDPtoQDPProof
QDP
              ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

EVAL(x[0], y[0], z[0]) → COND_EVAL(greatereq_int(x[0], pos(0)), x[0], y[0], z[0])
EVAL(x[1], y[1], z[1]) → COND_EVAL1(greatereq_int(x[1], pos(0)), x[1], y[1], z[1])
COND_EVAL1(true, x[2], y[2], z[2]) → EVAL(plus_int(x[2], z[2]), plus_int(pos(s(0)), y[2]), minus_int(z[2], pos(s(s(0)))))
COND_EVAL(true, x[3], y[3], z[3]) → EVAL(plus_int(x[3], y[3]), minus_int(y[3], pos(s(s(0)))), z[3])

The TRS R consists of the following rules:

greatereq_int(pos(x), pos(0)) → true
greatereq_int(neg(0), pos(0)) → true
greatereq_int(neg(0), neg(y)) → true
greatereq_int(pos(x), neg(y)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(neg(x), pos(s(y))) → false
greatereq_int(neg(s(x)), pos(0)) → false
greatereq_int(neg(s(x)), neg(0)) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(neg(x), pos(y)) → minus_nat(y, x)
plus_int(neg(x), neg(y)) → neg(plus_nat(x, y))
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), neg(y)) → minus_nat(y, x)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
minus_int(pos(x), neg(y)) → pos(plus_nat(x, y))

The set Q consists of the following terms:

Cond_eval(true, x0, x1, x2)
eval(x0, x1, x2)
Cond_eval1(true, x0, x1, x2)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

↳ ITRS
  ↳ ITRStoIDPProof
    ↳ IDP
      ↳ UsableRulesProof
        ↳ IDP
          ↳ IDPtoQDPProof
            ↳ QDP
              ↳ UsableRulesProof
QDP
                  ↳ QReductionProof

Q DP problem:
The TRS P consists of the following rules:

EVAL(x[0], y[0], z[0]) → COND_EVAL(greatereq_int(x[0], pos(0)), x[0], y[0], z[0])
EVAL(x[1], y[1], z[1]) → COND_EVAL1(greatereq_int(x[1], pos(0)), x[1], y[1], z[1])
COND_EVAL1(true, x[2], y[2], z[2]) → EVAL(plus_int(x[2], z[2]), plus_int(pos(s(0)), y[2]), minus_int(z[2], pos(s(s(0)))))
COND_EVAL(true, x[3], y[3], z[3]) → EVAL(plus_int(x[3], y[3]), minus_int(y[3], pos(s(s(0)))), z[3])

The TRS R consists of the following rules:

greatereq_int(pos(x), pos(0)) → true
greatereq_int(neg(0), pos(0)) → true
greatereq_int(neg(s(x)), pos(0)) → false
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(neg(x), pos(y)) → minus_nat(y, x)
plus_int(neg(x), neg(y)) → neg(plus_nat(x, y))
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)

The set Q consists of the following terms:

Cond_eval(true, x0, x1, x2)
eval(x0, x1, x2)
Cond_eval1(true, x0, x1, x2)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].

Cond_eval(true, x0, x1, x2)
eval(x0, x1, x2)
Cond_eval1(true, x0, x1, x2)



↳ ITRS
  ↳ ITRStoIDPProof
    ↳ IDP
      ↳ UsableRulesProof
        ↳ IDP
          ↳ IDPtoQDPProof
            ↳ QDP
              ↳ UsableRulesProof
                ↳ QDP
                  ↳ QReductionProof
QDP
                      ↳ Narrowing

Q DP problem:
The TRS P consists of the following rules:

EVAL(x[0], y[0], z[0]) → COND_EVAL(greatereq_int(x[0], pos(0)), x[0], y[0], z[0])
EVAL(x[1], y[1], z[1]) → COND_EVAL1(greatereq_int(x[1], pos(0)), x[1], y[1], z[1])
COND_EVAL1(true, x[2], y[2], z[2]) → EVAL(plus_int(x[2], z[2]), plus_int(pos(s(0)), y[2]), minus_int(z[2], pos(s(s(0)))))
COND_EVAL(true, x[3], y[3], z[3]) → EVAL(plus_int(x[3], y[3]), minus_int(y[3], pos(s(s(0)))), z[3])

The TRS R consists of the following rules:

greatereq_int(pos(x), pos(0)) → true
greatereq_int(neg(0), pos(0)) → true
greatereq_int(neg(s(x)), pos(0)) → false
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(neg(x), pos(y)) → minus_nat(y, x)
plus_int(neg(x), neg(y)) → neg(plus_nat(x, y))
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)

The set Q consists of the following terms:

greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))

We have to consider all minimal (P,Q,R)-chains.
By narrowing [LPAR04] the rule EVAL(x[0], y[0], z[0]) → COND_EVAL(greatereq_int(x[0], pos(0)), x[0], y[0], z[0]) at position [0] we obtained the following new rules [LPAR04]:

EVAL(neg(s(x0)), y1, y2) → COND_EVAL(false, neg(s(x0)), y1, y2)
EVAL(neg(0), y1, y2) → COND_EVAL(true, neg(0), y1, y2)
EVAL(pos(x0), y1, y2) → COND_EVAL(true, pos(x0), y1, y2)



↳ ITRS
  ↳ ITRStoIDPProof
    ↳ IDP
      ↳ UsableRulesProof
        ↳ IDP
          ↳ IDPtoQDPProof
            ↳ QDP
              ↳ UsableRulesProof
                ↳ QDP
                  ↳ QReductionProof
                    ↳ QDP
                      ↳ Narrowing
QDP
                          ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

EVAL(x[1], y[1], z[1]) → COND_EVAL1(greatereq_int(x[1], pos(0)), x[1], y[1], z[1])
COND_EVAL1(true, x[2], y[2], z[2]) → EVAL(plus_int(x[2], z[2]), plus_int(pos(s(0)), y[2]), minus_int(z[2], pos(s(s(0)))))
COND_EVAL(true, x[3], y[3], z[3]) → EVAL(plus_int(x[3], y[3]), minus_int(y[3], pos(s(s(0)))), z[3])
EVAL(neg(s(x0)), y1, y2) → COND_EVAL(false, neg(s(x0)), y1, y2)
EVAL(neg(0), y1, y2) → COND_EVAL(true, neg(0), y1, y2)
EVAL(pos(x0), y1, y2) → COND_EVAL(true, pos(x0), y1, y2)

The TRS R consists of the following rules:

greatereq_int(pos(x), pos(0)) → true
greatereq_int(neg(0), pos(0)) → true
greatereq_int(neg(s(x)), pos(0)) → false
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(neg(x), pos(y)) → minus_nat(y, x)
plus_int(neg(x), neg(y)) → neg(plus_nat(x, y))
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)

The set Q consists of the following terms:

greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.

↳ ITRS
  ↳ ITRStoIDPProof
    ↳ IDP
      ↳ UsableRulesProof
        ↳ IDP
          ↳ IDPtoQDPProof
            ↳ QDP
              ↳ UsableRulesProof
                ↳ QDP
                  ↳ QReductionProof
                    ↳ QDP
                      ↳ Narrowing
                        ↳ QDP
                          ↳ DependencyGraphProof
QDP
                              ↳ Narrowing

Q DP problem:
The TRS P consists of the following rules:

COND_EVAL1(true, x[2], y[2], z[2]) → EVAL(plus_int(x[2], z[2]), plus_int(pos(s(0)), y[2]), minus_int(z[2], pos(s(s(0)))))
EVAL(x[1], y[1], z[1]) → COND_EVAL1(greatereq_int(x[1], pos(0)), x[1], y[1], z[1])
EVAL(neg(0), y1, y2) → COND_EVAL(true, neg(0), y1, y2)
COND_EVAL(true, x[3], y[3], z[3]) → EVAL(plus_int(x[3], y[3]), minus_int(y[3], pos(s(s(0)))), z[3])
EVAL(pos(x0), y1, y2) → COND_EVAL(true, pos(x0), y1, y2)

The TRS R consists of the following rules:

greatereq_int(pos(x), pos(0)) → true
greatereq_int(neg(0), pos(0)) → true
greatereq_int(neg(s(x)), pos(0)) → false
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(neg(x), pos(y)) → minus_nat(y, x)
plus_int(neg(x), neg(y)) → neg(plus_nat(x, y))
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)

The set Q consists of the following terms:

greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))

We have to consider all minimal (P,Q,R)-chains.
By narrowing [LPAR04] the rule EVAL(x[1], y[1], z[1]) → COND_EVAL1(greatereq_int(x[1], pos(0)), x[1], y[1], z[1]) at position [0] we obtained the following new rules [LPAR04]:

EVAL(neg(0), y1, y2) → COND_EVAL1(true, neg(0), y1, y2)
EVAL(neg(s(x0)), y1, y2) → COND_EVAL1(false, neg(s(x0)), y1, y2)
EVAL(pos(x0), y1, y2) → COND_EVAL1(true, pos(x0), y1, y2)



↳ ITRS
  ↳ ITRStoIDPProof
    ↳ IDP
      ↳ UsableRulesProof
        ↳ IDP
          ↳ IDPtoQDPProof
            ↳ QDP
              ↳ UsableRulesProof
                ↳ QDP
                  ↳ QReductionProof
                    ↳ QDP
                      ↳ Narrowing
                        ↳ QDP
                          ↳ DependencyGraphProof
                            ↳ QDP
                              ↳ Narrowing
QDP
                                  ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

COND_EVAL1(true, x[2], y[2], z[2]) → EVAL(plus_int(x[2], z[2]), plus_int(pos(s(0)), y[2]), minus_int(z[2], pos(s(s(0)))))
EVAL(neg(0), y1, y2) → COND_EVAL(true, neg(0), y1, y2)
COND_EVAL(true, x[3], y[3], z[3]) → EVAL(plus_int(x[3], y[3]), minus_int(y[3], pos(s(s(0)))), z[3])
EVAL(pos(x0), y1, y2) → COND_EVAL(true, pos(x0), y1, y2)
EVAL(neg(0), y1, y2) → COND_EVAL1(true, neg(0), y1, y2)
EVAL(neg(s(x0)), y1, y2) → COND_EVAL1(false, neg(s(x0)), y1, y2)
EVAL(pos(x0), y1, y2) → COND_EVAL1(true, pos(x0), y1, y2)

The TRS R consists of the following rules:

greatereq_int(pos(x), pos(0)) → true
greatereq_int(neg(0), pos(0)) → true
greatereq_int(neg(s(x)), pos(0)) → false
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(neg(x), pos(y)) → minus_nat(y, x)
plus_int(neg(x), neg(y)) → neg(plus_nat(x, y))
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)

The set Q consists of the following terms:

greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.

↳ ITRS
  ↳ ITRStoIDPProof
    ↳ IDP
      ↳ UsableRulesProof
        ↳ IDP
          ↳ IDPtoQDPProof
            ↳ QDP
              ↳ UsableRulesProof
                ↳ QDP
                  ↳ QReductionProof
                    ↳ QDP
                      ↳ Narrowing
                        ↳ QDP
                          ↳ DependencyGraphProof
                            ↳ QDP
                              ↳ Narrowing
                                ↳ QDP
                                  ↳ DependencyGraphProof
QDP
                                      ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

EVAL(neg(0), y1, y2) → COND_EVAL(true, neg(0), y1, y2)
COND_EVAL(true, x[3], y[3], z[3]) → EVAL(plus_int(x[3], y[3]), minus_int(y[3], pos(s(s(0)))), z[3])
EVAL(pos(x0), y1, y2) → COND_EVAL(true, pos(x0), y1, y2)
EVAL(neg(0), y1, y2) → COND_EVAL1(true, neg(0), y1, y2)
COND_EVAL1(true, x[2], y[2], z[2]) → EVAL(plus_int(x[2], z[2]), plus_int(pos(s(0)), y[2]), minus_int(z[2], pos(s(s(0)))))
EVAL(pos(x0), y1, y2) → COND_EVAL1(true, pos(x0), y1, y2)

The TRS R consists of the following rules:

greatereq_int(pos(x), pos(0)) → true
greatereq_int(neg(0), pos(0)) → true
greatereq_int(neg(s(x)), pos(0)) → false
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(neg(x), pos(y)) → minus_nat(y, x)
plus_int(neg(x), neg(y)) → neg(plus_nat(x, y))
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)

The set Q consists of the following terms:

greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

↳ ITRS
  ↳ ITRStoIDPProof
    ↳ IDP
      ↳ UsableRulesProof
        ↳ IDP
          ↳ IDPtoQDPProof
            ↳ QDP
              ↳ UsableRulesProof
                ↳ QDP
                  ↳ QReductionProof
                    ↳ QDP
                      ↳ Narrowing
                        ↳ QDP
                          ↳ DependencyGraphProof
                            ↳ QDP
                              ↳ Narrowing
                                ↳ QDP
                                  ↳ DependencyGraphProof
                                    ↳ QDP
                                      ↳ UsableRulesProof
QDP
                                          ↳ QReductionProof

Q DP problem:
The TRS P consists of the following rules:

EVAL(neg(0), y1, y2) → COND_EVAL(true, neg(0), y1, y2)
COND_EVAL(true, x[3], y[3], z[3]) → EVAL(plus_int(x[3], y[3]), minus_int(y[3], pos(s(s(0)))), z[3])
EVAL(pos(x0), y1, y2) → COND_EVAL(true, pos(x0), y1, y2)
EVAL(neg(0), y1, y2) → COND_EVAL1(true, neg(0), y1, y2)
COND_EVAL1(true, x[2], y[2], z[2]) → EVAL(plus_int(x[2], z[2]), plus_int(pos(s(0)), y[2]), minus_int(z[2], pos(s(s(0)))))
EVAL(pos(x0), y1, y2) → COND_EVAL1(true, pos(x0), y1, y2)

The TRS R consists of the following rules:

plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(neg(x), pos(y)) → minus_nat(y, x)
plus_int(neg(x), neg(y)) → neg(plus_nat(x, y))
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)

The set Q consists of the following terms:

greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].

greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))



↳ ITRS
  ↳ ITRStoIDPProof
    ↳ IDP
      ↳ UsableRulesProof
        ↳ IDP
          ↳ IDPtoQDPProof
            ↳ QDP
              ↳ UsableRulesProof
                ↳ QDP
                  ↳ QReductionProof
                    ↳ QDP
                      ↳ Narrowing
                        ↳ QDP
                          ↳ DependencyGraphProof
                            ↳ QDP
                              ↳ Narrowing
                                ↳ QDP
                                  ↳ DependencyGraphProof
                                    ↳ QDP
                                      ↳ UsableRulesProof
                                        ↳ QDP
                                          ↳ QReductionProof
QDP
                                              ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

EVAL(neg(0), y1, y2) → COND_EVAL(true, neg(0), y1, y2)
COND_EVAL(true, x[3], y[3], z[3]) → EVAL(plus_int(x[3], y[3]), minus_int(y[3], pos(s(s(0)))), z[3])
EVAL(pos(x0), y1, y2) → COND_EVAL(true, pos(x0), y1, y2)
EVAL(neg(0), y1, y2) → COND_EVAL1(true, neg(0), y1, y2)
COND_EVAL1(true, x[2], y[2], z[2]) → EVAL(plus_int(x[2], z[2]), plus_int(pos(s(0)), y[2]), minus_int(z[2], pos(s(s(0)))))
EVAL(pos(x0), y1, y2) → COND_EVAL1(true, pos(x0), y1, y2)

The TRS R consists of the following rules:

plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(neg(x), pos(y)) → minus_nat(y, x)
plus_int(neg(x), neg(y)) → neg(plus_nat(x, y))
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)

The set Q consists of the following terms:

plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))

We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


EVAL(neg(0), y1, y2) → COND_EVAL(true, neg(0), y1, y2)
The remaining pairs can at least be oriented weakly.

COND_EVAL(true, x[3], y[3], z[3]) → EVAL(plus_int(x[3], y[3]), minus_int(y[3], pos(s(s(0)))), z[3])
EVAL(pos(x0), y1, y2) → COND_EVAL(true, pos(x0), y1, y2)
EVAL(neg(0), y1, y2) → COND_EVAL1(true, neg(0), y1, y2)
COND_EVAL1(true, x[2], y[2], z[2]) → EVAL(plus_int(x[2], z[2]), plus_int(pos(s(0)), y[2]), minus_int(z[2], pos(s(s(0)))))
EVAL(pos(x0), y1, y2) → COND_EVAL1(true, pos(x0), y1, y2)
Used ordering: Matrix interpretation [MATRO]:

POL(EVAL(x1, x2, x3)) =
/10\
\00/
·x1 +
/0\
\0/
+
/10\
\00/
·x2 +
/10\
\00/
·x3

POL(neg(x1)) =
/10\
\00/
·x1 +
/0\
\1/

POL(0) =
/1\
\0/

POL(COND_EVAL(x1, x2, x3, x4)) =
/00\
\00/
·x1 +
/0\
\0/
+
/00\
\00/
·x2 +
/10\
\00/
·x3 +
/10\
\00/
·x4

POL(true) =
/0\
\0/

POL(plus_int(x1, x2)) =
/00\
\01/
·x1 +
/0\
\0/
+
/10\
\01/
·x2

POL(minus_int(x1, x2)) =
/00\
\00/
·x1 +
/0\
\1/
+
/01\
\00/
·x2

POL(pos(x1)) =
/00\
\10/
·x1 +
/0\
\0/

POL(s(x1)) =
/00\
\00/
·x1 +
/0\
\0/

POL(COND_EVAL1(x1, x2, x3, x4)) =
/00\
\00/
·x1 +
/0\
\0/
+
/10\
\00/
·x2 +
/10\
\00/
·x3 +
/10\
\00/
·x4

POL(minus_nat(x1, x2)) =
/00\
\00/
·x1 +
/0\
\1/
+
/00\
\00/
·x2

POL(plus_nat(x1, x2)) =
/00\
\00/
·x1 +
/0\
\0/
+
/10\
\11/
·x2

The following usable rules [FROCOS05] were oriented:

plus_int(neg(x), pos(y)) → minus_nat(y, x)
minus_nat(s(x), s(y)) → minus_nat(x, y)
plus_int(neg(x), neg(y)) → neg(plus_nat(x, y))
plus_int(pos(x), neg(y)) → minus_nat(x, y)
minus_nat(0, 0) → pos(0)
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(0, s(y)) → neg(s(y))
minus_int(pos(x), pos(y)) → minus_nat(x, y)
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))



↳ ITRS
  ↳ ITRStoIDPProof
    ↳ IDP
      ↳ UsableRulesProof
        ↳ IDP
          ↳ IDPtoQDPProof
            ↳ QDP
              ↳ UsableRulesProof
                ↳ QDP
                  ↳ QReductionProof
                    ↳ QDP
                      ↳ Narrowing
                        ↳ QDP
                          ↳ DependencyGraphProof
                            ↳ QDP
                              ↳ Narrowing
                                ↳ QDP
                                  ↳ DependencyGraphProof
                                    ↳ QDP
                                      ↳ UsableRulesProof
                                        ↳ QDP
                                          ↳ QReductionProof
                                            ↳ QDP
                                              ↳ QDPOrderProof
QDP
                                                  ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

COND_EVAL(true, x[3], y[3], z[3]) → EVAL(plus_int(x[3], y[3]), minus_int(y[3], pos(s(s(0)))), z[3])
EVAL(pos(x0), y1, y2) → COND_EVAL(true, pos(x0), y1, y2)
EVAL(neg(0), y1, y2) → COND_EVAL1(true, neg(0), y1, y2)
COND_EVAL1(true, x[2], y[2], z[2]) → EVAL(plus_int(x[2], z[2]), plus_int(pos(s(0)), y[2]), minus_int(z[2], pos(s(s(0)))))
EVAL(pos(x0), y1, y2) → COND_EVAL1(true, pos(x0), y1, y2)

The TRS R consists of the following rules:

plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(neg(x), pos(y)) → minus_nat(y, x)
plus_int(neg(x), neg(y)) → neg(plus_nat(x, y))
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)

The set Q consists of the following terms:

plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))

We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


EVAL(neg(0), y1, y2) → COND_EVAL1(true, neg(0), y1, y2)
The remaining pairs can at least be oriented weakly.

COND_EVAL(true, x[3], y[3], z[3]) → EVAL(plus_int(x[3], y[3]), minus_int(y[3], pos(s(s(0)))), z[3])
EVAL(pos(x0), y1, y2) → COND_EVAL(true, pos(x0), y1, y2)
COND_EVAL1(true, x[2], y[2], z[2]) → EVAL(plus_int(x[2], z[2]), plus_int(pos(s(0)), y[2]), minus_int(z[2], pos(s(s(0)))))
EVAL(pos(x0), y1, y2) → COND_EVAL1(true, pos(x0), y1, y2)
Used ordering: Matrix interpretation [MATRO]:

POL(COND_EVAL(x1, x2, x3, x4)) =
/00\
\00/
·x1 +
/0\
\0/
+
/00\
\00/
·x2 +
/01\
\00/
·x3 +
/01\
\00/
·x4

POL(true) =
/0\
\0/

POL(EVAL(x1, x2, x3)) =
/01\
\00/
·x1 +
/0\
\0/
+
/01\
\00/
·x2 +
/01\
\00/
·x3

POL(plus_int(x1, x2)) =
/01\
\00/
·x1 +
/1\
\0/
+
/10\
\01/
·x2

POL(minus_int(x1, x2)) =
/00\
\00/
·x1 +
/1\
\0/
+
/00\
\10/
·x2

POL(pos(x1)) =
/10\
\00/
·x1 +
/0\
\0/

POL(s(x1)) =
/00\
\00/
·x1 +
/0\
\0/

POL(0) =
/1\
\0/

POL(neg(x1)) =
/00\
\10/
·x1 +
/0\
\0/

POL(COND_EVAL1(x1, x2, x3, x4)) =
/00\
\00/
·x1 +
/0\
\0/
+
/00\
\00/
·x2 +
/01\
\00/
·x3 +
/01\
\00/
·x4

POL(minus_nat(x1, x2)) =
/00\
\00/
·x1 +
/1\
\0/
+
/00\
\00/
·x2

POL(plus_nat(x1, x2)) =
/00\
\10/
·x1 +
/0\
\0/
+
/10\
\01/
·x2

The following usable rules [FROCOS05] were oriented:

plus_int(neg(x), pos(y)) → minus_nat(y, x)
minus_nat(s(x), s(y)) → minus_nat(x, y)
plus_int(neg(x), neg(y)) → neg(plus_nat(x, y))
plus_int(pos(x), neg(y)) → minus_nat(x, y)
minus_nat(0, 0) → pos(0)
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(0, s(y)) → neg(s(y))
minus_int(pos(x), pos(y)) → minus_nat(x, y)
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))



↳ ITRS
  ↳ ITRStoIDPProof
    ↳ IDP
      ↳ UsableRulesProof
        ↳ IDP
          ↳ IDPtoQDPProof
            ↳ QDP
              ↳ UsableRulesProof
                ↳ QDP
                  ↳ QReductionProof
                    ↳ QDP
                      ↳ Narrowing
                        ↳ QDP
                          ↳ DependencyGraphProof
                            ↳ QDP
                              ↳ Narrowing
                                ↳ QDP
                                  ↳ DependencyGraphProof
                                    ↳ QDP
                                      ↳ UsableRulesProof
                                        ↳ QDP
                                          ↳ QReductionProof
                                            ↳ QDP
                                              ↳ QDPOrderProof
                                                ↳ QDP
                                                  ↳ QDPOrderProof
QDP
                                                      ↳ Narrowing

Q DP problem:
The TRS P consists of the following rules:

COND_EVAL(true, x[3], y[3], z[3]) → EVAL(plus_int(x[3], y[3]), minus_int(y[3], pos(s(s(0)))), z[3])
EVAL(pos(x0), y1, y2) → COND_EVAL(true, pos(x0), y1, y2)
COND_EVAL1(true, x[2], y[2], z[2]) → EVAL(plus_int(x[2], z[2]), plus_int(pos(s(0)), y[2]), minus_int(z[2], pos(s(s(0)))))
EVAL(pos(x0), y1, y2) → COND_EVAL1(true, pos(x0), y1, y2)

The TRS R consists of the following rules:

plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(neg(x), pos(y)) → minus_nat(y, x)
plus_int(neg(x), neg(y)) → neg(plus_nat(x, y))
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)

The set Q consists of the following terms:

plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))

We have to consider all minimal (P,Q,R)-chains.
By narrowing [LPAR04] the rule COND_EVAL(true, x[3], y[3], z[3]) → EVAL(plus_int(x[3], y[3]), minus_int(y[3], pos(s(s(0)))), z[3]) at position [0] we obtained the following new rules [LPAR04]:

COND_EVAL(true, neg(x0), pos(x1), y2) → EVAL(minus_nat(x1, x0), minus_int(pos(x1), pos(s(s(0)))), y2)
COND_EVAL(true, neg(x0), neg(x1), y2) → EVAL(neg(plus_nat(x0, x1)), minus_int(neg(x1), pos(s(s(0)))), y2)
COND_EVAL(true, pos(x0), neg(x1), y2) → EVAL(minus_nat(x0, x1), minus_int(neg(x1), pos(s(s(0)))), y2)
COND_EVAL(true, pos(x0), pos(x1), y2) → EVAL(pos(plus_nat(x0, x1)), minus_int(pos(x1), pos(s(s(0)))), y2)



↳ ITRS
  ↳ ITRStoIDPProof
    ↳ IDP
      ↳ UsableRulesProof
        ↳ IDP
          ↳ IDPtoQDPProof
            ↳ QDP
              ↳ UsableRulesProof
                ↳ QDP
                  ↳ QReductionProof
                    ↳ QDP
                      ↳ Narrowing
                        ↳ QDP
                          ↳ DependencyGraphProof
                            ↳ QDP
                              ↳ Narrowing
                                ↳ QDP
                                  ↳ DependencyGraphProof
                                    ↳ QDP
                                      ↳ UsableRulesProof
                                        ↳ QDP
                                          ↳ QReductionProof
                                            ↳ QDP
                                              ↳ QDPOrderProof
                                                ↳ QDP
                                                  ↳ QDPOrderProof
                                                    ↳ QDP
                                                      ↳ Narrowing
QDP
                                                          ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

EVAL(pos(x0), y1, y2) → COND_EVAL(true, pos(x0), y1, y2)
COND_EVAL1(true, x[2], y[2], z[2]) → EVAL(plus_int(x[2], z[2]), plus_int(pos(s(0)), y[2]), minus_int(z[2], pos(s(s(0)))))
EVAL(pos(x0), y1, y2) → COND_EVAL1(true, pos(x0), y1, y2)
COND_EVAL(true, neg(x0), pos(x1), y2) → EVAL(minus_nat(x1, x0), minus_int(pos(x1), pos(s(s(0)))), y2)
COND_EVAL(true, neg(x0), neg(x1), y2) → EVAL(neg(plus_nat(x0, x1)), minus_int(neg(x1), pos(s(s(0)))), y2)
COND_EVAL(true, pos(x0), neg(x1), y2) → EVAL(minus_nat(x0, x1), minus_int(neg(x1), pos(s(s(0)))), y2)
COND_EVAL(true, pos(x0), pos(x1), y2) → EVAL(pos(plus_nat(x0, x1)), minus_int(pos(x1), pos(s(s(0)))), y2)

The TRS R consists of the following rules:

plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(neg(x), pos(y)) → minus_nat(y, x)
plus_int(neg(x), neg(y)) → neg(plus_nat(x, y))
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)

The set Q consists of the following terms:

plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 2 less nodes.

↳ ITRS
  ↳ ITRStoIDPProof
    ↳ IDP
      ↳ UsableRulesProof
        ↳ IDP
          ↳ IDPtoQDPProof
            ↳ QDP
              ↳ UsableRulesProof
                ↳ QDP
                  ↳ QReductionProof
                    ↳ QDP
                      ↳ Narrowing
                        ↳ QDP
                          ↳ DependencyGraphProof
                            ↳ QDP
                              ↳ Narrowing
                                ↳ QDP
                                  ↳ DependencyGraphProof
                                    ↳ QDP
                                      ↳ UsableRulesProof
                                        ↳ QDP
                                          ↳ QReductionProof
                                            ↳ QDP
                                              ↳ QDPOrderProof
                                                ↳ QDP
                                                  ↳ QDPOrderProof
                                                    ↳ QDP
                                                      ↳ Narrowing
                                                        ↳ QDP
                                                          ↳ DependencyGraphProof
QDP
                                                              ↳ Rewriting

Q DP problem:
The TRS P consists of the following rules:

COND_EVAL(true, pos(x0), neg(x1), y2) → EVAL(minus_nat(x0, x1), minus_int(neg(x1), pos(s(s(0)))), y2)
EVAL(pos(x0), y1, y2) → COND_EVAL(true, pos(x0), y1, y2)
COND_EVAL(true, pos(x0), pos(x1), y2) → EVAL(pos(plus_nat(x0, x1)), minus_int(pos(x1), pos(s(s(0)))), y2)
EVAL(pos(x0), y1, y2) → COND_EVAL1(true, pos(x0), y1, y2)
COND_EVAL1(true, x[2], y[2], z[2]) → EVAL(plus_int(x[2], z[2]), plus_int(pos(s(0)), y[2]), minus_int(z[2], pos(s(s(0)))))

The TRS R consists of the following rules:

plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(neg(x), pos(y)) → minus_nat(y, x)
plus_int(neg(x), neg(y)) → neg(plus_nat(x, y))
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)

The set Q consists of the following terms:

plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [LPAR04] the rule COND_EVAL(true, pos(x0), neg(x1), y2) → EVAL(minus_nat(x0, x1), minus_int(neg(x1), pos(s(s(0)))), y2) at position [1] we obtained the following new rules [LPAR04]:

COND_EVAL(true, pos(x0), neg(x1), y2) → EVAL(minus_nat(x0, x1), neg(plus_nat(x1, s(s(0)))), y2)



↳ ITRS
  ↳ ITRStoIDPProof
    ↳ IDP
      ↳ UsableRulesProof
        ↳ IDP
          ↳ IDPtoQDPProof
            ↳ QDP
              ↳ UsableRulesProof
                ↳ QDP
                  ↳ QReductionProof
                    ↳ QDP
                      ↳ Narrowing
                        ↳ QDP
                          ↳ DependencyGraphProof
                            ↳ QDP
                              ↳ Narrowing
                                ↳ QDP
                                  ↳ DependencyGraphProof
                                    ↳ QDP
                                      ↳ UsableRulesProof
                                        ↳ QDP
                                          ↳ QReductionProof
                                            ↳ QDP
                                              ↳ QDPOrderProof
                                                ↳ QDP
                                                  ↳ QDPOrderProof
                                                    ↳ QDP
                                                      ↳ Narrowing
                                                        ↳ QDP
                                                          ↳ DependencyGraphProof
                                                            ↳ QDP
                                                              ↳ Rewriting
QDP
                                                                  ↳ Rewriting

Q DP problem:
The TRS P consists of the following rules:

EVAL(pos(x0), y1, y2) → COND_EVAL(true, pos(x0), y1, y2)
COND_EVAL(true, pos(x0), pos(x1), y2) → EVAL(pos(plus_nat(x0, x1)), minus_int(pos(x1), pos(s(s(0)))), y2)
EVAL(pos(x0), y1, y2) → COND_EVAL1(true, pos(x0), y1, y2)
COND_EVAL1(true, x[2], y[2], z[2]) → EVAL(plus_int(x[2], z[2]), plus_int(pos(s(0)), y[2]), minus_int(z[2], pos(s(s(0)))))
COND_EVAL(true, pos(x0), neg(x1), y2) → EVAL(minus_nat(x0, x1), neg(plus_nat(x1, s(s(0)))), y2)

The TRS R consists of the following rules:

plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(neg(x), pos(y)) → minus_nat(y, x)
plus_int(neg(x), neg(y)) → neg(plus_nat(x, y))
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)

The set Q consists of the following terms:

plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [LPAR04] the rule COND_EVAL(true, pos(x0), pos(x1), y2) → EVAL(pos(plus_nat(x0, x1)), minus_int(pos(x1), pos(s(s(0)))), y2) at position [1] we obtained the following new rules [LPAR04]:

COND_EVAL(true, pos(x0), pos(x1), y2) → EVAL(pos(plus_nat(x0, x1)), minus_nat(x1, s(s(0))), y2)



↳ ITRS
  ↳ ITRStoIDPProof
    ↳ IDP
      ↳ UsableRulesProof
        ↳ IDP
          ↳ IDPtoQDPProof
            ↳ QDP
              ↳ UsableRulesProof
                ↳ QDP
                  ↳ QReductionProof
                    ↳ QDP
                      ↳ Narrowing
                        ↳ QDP
                          ↳ DependencyGraphProof
                            ↳ QDP
                              ↳ Narrowing
                                ↳ QDP
                                  ↳ DependencyGraphProof
                                    ↳ QDP
                                      ↳ UsableRulesProof
                                        ↳ QDP
                                          ↳ QReductionProof
                                            ↳ QDP
                                              ↳ QDPOrderProof
                                                ↳ QDP
                                                  ↳ QDPOrderProof
                                                    ↳ QDP
                                                      ↳ Narrowing
                                                        ↳ QDP
                                                          ↳ DependencyGraphProof
                                                            ↳ QDP
                                                              ↳ Rewriting
                                                                ↳ QDP
                                                                  ↳ Rewriting
QDP
                                                                      ↳ Narrowing

Q DP problem:
The TRS P consists of the following rules:

EVAL(pos(x0), y1, y2) → COND_EVAL(true, pos(x0), y1, y2)
EVAL(pos(x0), y1, y2) → COND_EVAL1(true, pos(x0), y1, y2)
COND_EVAL1(true, x[2], y[2], z[2]) → EVAL(plus_int(x[2], z[2]), plus_int(pos(s(0)), y[2]), minus_int(z[2], pos(s(s(0)))))
COND_EVAL(true, pos(x0), neg(x1), y2) → EVAL(minus_nat(x0, x1), neg(plus_nat(x1, s(s(0)))), y2)
COND_EVAL(true, pos(x0), pos(x1), y2) → EVAL(pos(plus_nat(x0, x1)), minus_nat(x1, s(s(0))), y2)

The TRS R consists of the following rules:

plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(neg(x), pos(y)) → minus_nat(y, x)
plus_int(neg(x), neg(y)) → neg(plus_nat(x, y))
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)

The set Q consists of the following terms:

plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))

We have to consider all minimal (P,Q,R)-chains.
By narrowing [LPAR04] the rule COND_EVAL1(true, x[2], y[2], z[2]) → EVAL(plus_int(x[2], z[2]), plus_int(pos(s(0)), y[2]), minus_int(z[2], pos(s(s(0))))) at position [0] we obtained the following new rules [LPAR04]:

COND_EVAL1(true, neg(x0), y1, pos(x1)) → EVAL(minus_nat(x1, x0), plus_int(pos(s(0)), y1), minus_int(pos(x1), pos(s(s(0)))))
COND_EVAL1(true, pos(x0), y1, pos(x1)) → EVAL(pos(plus_nat(x0, x1)), plus_int(pos(s(0)), y1), minus_int(pos(x1), pos(s(s(0)))))
COND_EVAL1(true, pos(x0), y1, neg(x1)) → EVAL(minus_nat(x0, x1), plus_int(pos(s(0)), y1), minus_int(neg(x1), pos(s(s(0)))))
COND_EVAL1(true, neg(x0), y1, neg(x1)) → EVAL(neg(plus_nat(x0, x1)), plus_int(pos(s(0)), y1), minus_int(neg(x1), pos(s(s(0)))))



↳ ITRS
  ↳ ITRStoIDPProof
    ↳ IDP
      ↳ UsableRulesProof
        ↳ IDP
          ↳ IDPtoQDPProof
            ↳ QDP
              ↳ UsableRulesProof
                ↳ QDP
                  ↳ QReductionProof
                    ↳ QDP
                      ↳ Narrowing
                        ↳ QDP
                          ↳ DependencyGraphProof
                            ↳ QDP
                              ↳ Narrowing
                                ↳ QDP
                                  ↳ DependencyGraphProof
                                    ↳ QDP
                                      ↳ UsableRulesProof
                                        ↳ QDP
                                          ↳ QReductionProof
                                            ↳ QDP
                                              ↳ QDPOrderProof
                                                ↳ QDP
                                                  ↳ QDPOrderProof
                                                    ↳ QDP
                                                      ↳ Narrowing
                                                        ↳ QDP
                                                          ↳ DependencyGraphProof
                                                            ↳ QDP
                                                              ↳ Rewriting
                                                                ↳ QDP
                                                                  ↳ Rewriting
                                                                    ↳ QDP
                                                                      ↳ Narrowing
QDP
                                                                          ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

EVAL(pos(x0), y1, y2) → COND_EVAL(true, pos(x0), y1, y2)
EVAL(pos(x0), y1, y2) → COND_EVAL1(true, pos(x0), y1, y2)
COND_EVAL(true, pos(x0), neg(x1), y2) → EVAL(minus_nat(x0, x1), neg(plus_nat(x1, s(s(0)))), y2)
COND_EVAL(true, pos(x0), pos(x1), y2) → EVAL(pos(plus_nat(x0, x1)), minus_nat(x1, s(s(0))), y2)
COND_EVAL1(true, neg(x0), y1, pos(x1)) → EVAL(minus_nat(x1, x0), plus_int(pos(s(0)), y1), minus_int(pos(x1), pos(s(s(0)))))
COND_EVAL1(true, pos(x0), y1, pos(x1)) → EVAL(pos(plus_nat(x0, x1)), plus_int(pos(s(0)), y1), minus_int(pos(x1), pos(s(s(0)))))
COND_EVAL1(true, pos(x0), y1, neg(x1)) → EVAL(minus_nat(x0, x1), plus_int(pos(s(0)), y1), minus_int(neg(x1), pos(s(s(0)))))
COND_EVAL1(true, neg(x0), y1, neg(x1)) → EVAL(neg(plus_nat(x0, x1)), plus_int(pos(s(0)), y1), minus_int(neg(x1), pos(s(s(0)))))

The TRS R consists of the following rules:

plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(neg(x), pos(y)) → minus_nat(y, x)
plus_int(neg(x), neg(y)) → neg(plus_nat(x, y))
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)

The set Q consists of the following terms:

plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 2 less nodes.

↳ ITRS
  ↳ ITRStoIDPProof
    ↳ IDP
      ↳ UsableRulesProof
        ↳ IDP
          ↳ IDPtoQDPProof
            ↳ QDP
              ↳ UsableRulesProof
                ↳ QDP
                  ↳ QReductionProof
                    ↳ QDP
                      ↳ Narrowing
                        ↳ QDP
                          ↳ DependencyGraphProof
                            ↳ QDP
                              ↳ Narrowing
                                ↳ QDP
                                  ↳ DependencyGraphProof
                                    ↳ QDP
                                      ↳ UsableRulesProof
                                        ↳ QDP
                                          ↳ QReductionProof
                                            ↳ QDP
                                              ↳ QDPOrderProof
                                                ↳ QDP
                                                  ↳ QDPOrderProof
                                                    ↳ QDP
                                                      ↳ Narrowing
                                                        ↳ QDP
                                                          ↳ DependencyGraphProof
                                                            ↳ QDP
                                                              ↳ Rewriting
                                                                ↳ QDP
                                                                  ↳ Rewriting
                                                                    ↳ QDP
                                                                      ↳ Narrowing
                                                                        ↳ QDP
                                                                          ↳ DependencyGraphProof
QDP
                                                                              ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

COND_EVAL(true, pos(x0), neg(x1), y2) → EVAL(minus_nat(x0, x1), neg(plus_nat(x1, s(s(0)))), y2)
EVAL(pos(x0), y1, y2) → COND_EVAL(true, pos(x0), y1, y2)
COND_EVAL(true, pos(x0), pos(x1), y2) → EVAL(pos(plus_nat(x0, x1)), minus_nat(x1, s(s(0))), y2)
EVAL(pos(x0), y1, y2) → COND_EVAL1(true, pos(x0), y1, y2)
COND_EVAL1(true, pos(x0), y1, pos(x1)) → EVAL(pos(plus_nat(x0, x1)), plus_int(pos(s(0)), y1), minus_int(pos(x1), pos(s(s(0)))))
COND_EVAL1(true, pos(x0), y1, neg(x1)) → EVAL(minus_nat(x0, x1), plus_int(pos(s(0)), y1), minus_int(neg(x1), pos(s(s(0)))))

The TRS R consists of the following rules:

plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(neg(x), pos(y)) → minus_nat(y, x)
plus_int(neg(x), neg(y)) → neg(plus_nat(x, y))
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)

The set Q consists of the following terms:

plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

↳ ITRS
  ↳ ITRStoIDPProof
    ↳ IDP
      ↳ UsableRulesProof
        ↳ IDP
          ↳ IDPtoQDPProof
            ↳ QDP
              ↳ UsableRulesProof
                ↳ QDP
                  ↳ QReductionProof
                    ↳ QDP
                      ↳ Narrowing
                        ↳ QDP
                          ↳ DependencyGraphProof
                            ↳ QDP
                              ↳ Narrowing
                                ↳ QDP
                                  ↳ DependencyGraphProof
                                    ↳ QDP
                                      ↳ UsableRulesProof
                                        ↳ QDP
                                          ↳ QReductionProof
                                            ↳ QDP
                                              ↳ QDPOrderProof
                                                ↳ QDP
                                                  ↳ QDPOrderProof
                                                    ↳ QDP
                                                      ↳ Narrowing
                                                        ↳ QDP
                                                          ↳ DependencyGraphProof
                                                            ↳ QDP
                                                              ↳ Rewriting
                                                                ↳ QDP
                                                                  ↳ Rewriting
                                                                    ↳ QDP
                                                                      ↳ Narrowing
                                                                        ↳ QDP
                                                                          ↳ DependencyGraphProof
                                                                            ↳ QDP
                                                                              ↳ UsableRulesProof
QDP
                                                                                  ↳ Rewriting

Q DP problem:
The TRS P consists of the following rules:

COND_EVAL(true, pos(x0), neg(x1), y2) → EVAL(minus_nat(x0, x1), neg(plus_nat(x1, s(s(0)))), y2)
EVAL(pos(x0), y1, y2) → COND_EVAL(true, pos(x0), y1, y2)
COND_EVAL(true, pos(x0), pos(x1), y2) → EVAL(pos(plus_nat(x0, x1)), minus_nat(x1, s(s(0))), y2)
EVAL(pos(x0), y1, y2) → COND_EVAL1(true, pos(x0), y1, y2)
COND_EVAL1(true, pos(x0), y1, pos(x1)) → EVAL(pos(plus_nat(x0, x1)), plus_int(pos(s(0)), y1), minus_int(pos(x1), pos(s(s(0)))))
COND_EVAL1(true, pos(x0), y1, neg(x1)) → EVAL(minus_nat(x0, x1), plus_int(pos(s(0)), y1), minus_int(neg(x1), pos(s(s(0)))))

The TRS R consists of the following rules:

plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), s(y)) → minus_nat(x, y)
minus_nat(0, 0) → pos(0)
minus_nat(s(x), 0) → pos(s(x))
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))

The set Q consists of the following terms:

plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [LPAR04] the rule COND_EVAL1(true, pos(x0), y1, pos(x1)) → EVAL(pos(plus_nat(x0, x1)), plus_int(pos(s(0)), y1), minus_int(pos(x1), pos(s(s(0))))) at position [2] we obtained the following new rules [LPAR04]:

COND_EVAL1(true, pos(x0), y1, pos(x1)) → EVAL(pos(plus_nat(x0, x1)), plus_int(pos(s(0)), y1), minus_nat(x1, s(s(0))))



↳ ITRS
  ↳ ITRStoIDPProof
    ↳ IDP
      ↳ UsableRulesProof
        ↳ IDP
          ↳ IDPtoQDPProof
            ↳ QDP
              ↳ UsableRulesProof
                ↳ QDP
                  ↳ QReductionProof
                    ↳ QDP
                      ↳ Narrowing
                        ↳ QDP
                          ↳ DependencyGraphProof
                            ↳ QDP
                              ↳ Narrowing
                                ↳ QDP
                                  ↳ DependencyGraphProof
                                    ↳ QDP
                                      ↳ UsableRulesProof
                                        ↳ QDP
                                          ↳ QReductionProof
                                            ↳ QDP
                                              ↳ QDPOrderProof
                                                ↳ QDP
                                                  ↳ QDPOrderProof
                                                    ↳ QDP
                                                      ↳ Narrowing
                                                        ↳ QDP
                                                          ↳ DependencyGraphProof
                                                            ↳ QDP
                                                              ↳ Rewriting
                                                                ↳ QDP
                                                                  ↳ Rewriting
                                                                    ↳ QDP
                                                                      ↳ Narrowing
                                                                        ↳ QDP
                                                                          ↳ DependencyGraphProof
                                                                            ↳ QDP
                                                                              ↳ UsableRulesProof
                                                                                ↳ QDP
                                                                                  ↳ Rewriting
QDP
                                                                                      ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

COND_EVAL(true, pos(x0), neg(x1), y2) → EVAL(minus_nat(x0, x1), neg(plus_nat(x1, s(s(0)))), y2)
EVAL(pos(x0), y1, y2) → COND_EVAL(true, pos(x0), y1, y2)
COND_EVAL(true, pos(x0), pos(x1), y2) → EVAL(pos(plus_nat(x0, x1)), minus_nat(x1, s(s(0))), y2)
EVAL(pos(x0), y1, y2) → COND_EVAL1(true, pos(x0), y1, y2)
COND_EVAL1(true, pos(x0), y1, neg(x1)) → EVAL(minus_nat(x0, x1), plus_int(pos(s(0)), y1), minus_int(neg(x1), pos(s(s(0)))))
COND_EVAL1(true, pos(x0), y1, pos(x1)) → EVAL(pos(plus_nat(x0, x1)), plus_int(pos(s(0)), y1), minus_nat(x1, s(s(0))))

The TRS R consists of the following rules:

plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), s(y)) → minus_nat(x, y)
minus_nat(0, 0) → pos(0)
minus_nat(s(x), 0) → pos(s(x))
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))

The set Q consists of the following terms:

plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

↳ ITRS
  ↳ ITRStoIDPProof
    ↳ IDP
      ↳ UsableRulesProof
        ↳ IDP
          ↳ IDPtoQDPProof
            ↳ QDP
              ↳ UsableRulesProof
                ↳ QDP
                  ↳ QReductionProof
                    ↳ QDP
                      ↳ Narrowing
                        ↳ QDP
                          ↳ DependencyGraphProof
                            ↳ QDP
                              ↳ Narrowing
                                ↳ QDP
                                  ↳ DependencyGraphProof
                                    ↳ QDP
                                      ↳ UsableRulesProof
                                        ↳ QDP
                                          ↳ QReductionProof
                                            ↳ QDP
                                              ↳ QDPOrderProof
                                                ↳ QDP
                                                  ↳ QDPOrderProof
                                                    ↳ QDP
                                                      ↳ Narrowing
                                                        ↳ QDP
                                                          ↳ DependencyGraphProof
                                                            ↳ QDP
                                                              ↳ Rewriting
                                                                ↳ QDP
                                                                  ↳ Rewriting
                                                                    ↳ QDP
                                                                      ↳ Narrowing
                                                                        ↳ QDP
                                                                          ↳ DependencyGraphProof
                                                                            ↳ QDP
                                                                              ↳ UsableRulesProof
                                                                                ↳ QDP
                                                                                  ↳ Rewriting
                                                                                    ↳ QDP
                                                                                      ↳ UsableRulesProof
QDP
                                                                                          ↳ Rewriting

Q DP problem:
The TRS P consists of the following rules:

COND_EVAL(true, pos(x0), neg(x1), y2) → EVAL(minus_nat(x0, x1), neg(plus_nat(x1, s(s(0)))), y2)
EVAL(pos(x0), y1, y2) → COND_EVAL(true, pos(x0), y1, y2)
COND_EVAL(true, pos(x0), pos(x1), y2) → EVAL(pos(plus_nat(x0, x1)), minus_nat(x1, s(s(0))), y2)
EVAL(pos(x0), y1, y2) → COND_EVAL1(true, pos(x0), y1, y2)
COND_EVAL1(true, pos(x0), y1, neg(x1)) → EVAL(minus_nat(x0, x1), plus_int(pos(s(0)), y1), minus_int(neg(x1), pos(s(s(0)))))
COND_EVAL1(true, pos(x0), y1, pos(x1)) → EVAL(pos(plus_nat(x0, x1)), plus_int(pos(s(0)), y1), minus_nat(x1, s(s(0))))

The TRS R consists of the following rules:

plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), s(y)) → minus_nat(x, y)
minus_nat(0, 0) → pos(0)
minus_nat(s(x), 0) → pos(s(x))
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))

The set Q consists of the following terms:

plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [LPAR04] the rule COND_EVAL1(true, pos(x0), y1, neg(x1)) → EVAL(minus_nat(x0, x1), plus_int(pos(s(0)), y1), minus_int(neg(x1), pos(s(s(0))))) at position [2] we obtained the following new rules [LPAR04]:

COND_EVAL1(true, pos(x0), y1, neg(x1)) → EVAL(minus_nat(x0, x1), plus_int(pos(s(0)), y1), neg(plus_nat(x1, s(s(0)))))



↳ ITRS
  ↳ ITRStoIDPProof
    ↳ IDP
      ↳ UsableRulesProof
        ↳ IDP
          ↳ IDPtoQDPProof
            ↳ QDP
              ↳ UsableRulesProof
                ↳ QDP
                  ↳ QReductionProof
                    ↳ QDP
                      ↳ Narrowing
                        ↳ QDP
                          ↳ DependencyGraphProof
                            ↳ QDP
                              ↳ Narrowing
                                ↳ QDP
                                  ↳ DependencyGraphProof
                                    ↳ QDP
                                      ↳ UsableRulesProof
                                        ↳ QDP
                                          ↳ QReductionProof
                                            ↳ QDP
                                              ↳ QDPOrderProof
                                                ↳ QDP
                                                  ↳ QDPOrderProof
                                                    ↳ QDP
                                                      ↳ Narrowing
                                                        ↳ QDP
                                                          ↳ DependencyGraphProof
                                                            ↳ QDP
                                                              ↳ Rewriting
                                                                ↳ QDP
                                                                  ↳ Rewriting
                                                                    ↳ QDP
                                                                      ↳ Narrowing
                                                                        ↳ QDP
                                                                          ↳ DependencyGraphProof
                                                                            ↳ QDP
                                                                              ↳ UsableRulesProof
                                                                                ↳ QDP
                                                                                  ↳ Rewriting
                                                                                    ↳ QDP
                                                                                      ↳ UsableRulesProof
                                                                                        ↳ QDP
                                                                                          ↳ Rewriting
QDP
                                                                                              ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

COND_EVAL(true, pos(x0), neg(x1), y2) → EVAL(minus_nat(x0, x1), neg(plus_nat(x1, s(s(0)))), y2)
EVAL(pos(x0), y1, y2) → COND_EVAL(true, pos(x0), y1, y2)
COND_EVAL(true, pos(x0), pos(x1), y2) → EVAL(pos(plus_nat(x0, x1)), minus_nat(x1, s(s(0))), y2)
EVAL(pos(x0), y1, y2) → COND_EVAL1(true, pos(x0), y1, y2)
COND_EVAL1(true, pos(x0), y1, pos(x1)) → EVAL(pos(plus_nat(x0, x1)), plus_int(pos(s(0)), y1), minus_nat(x1, s(s(0))))
COND_EVAL1(true, pos(x0), y1, neg(x1)) → EVAL(minus_nat(x0, x1), plus_int(pos(s(0)), y1), neg(plus_nat(x1, s(s(0)))))

The TRS R consists of the following rules:

plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), s(y)) → minus_nat(x, y)
minus_nat(0, 0) → pos(0)
minus_nat(s(x), 0) → pos(s(x))
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))

The set Q consists of the following terms:

plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

↳ ITRS
  ↳ ITRStoIDPProof
    ↳ IDP
      ↳ UsableRulesProof
        ↳ IDP
          ↳ IDPtoQDPProof
            ↳ QDP
              ↳ UsableRulesProof
                ↳ QDP
                  ↳ QReductionProof
                    ↳ QDP
                      ↳ Narrowing
                        ↳ QDP
                          ↳ DependencyGraphProof
                            ↳ QDP
                              ↳ Narrowing
                                ↳ QDP
                                  ↳ DependencyGraphProof
                                    ↳ QDP
                                      ↳ UsableRulesProof
                                        ↳ QDP
                                          ↳ QReductionProof
                                            ↳ QDP
                                              ↳ QDPOrderProof
                                                ↳ QDP
                                                  ↳ QDPOrderProof
                                                    ↳ QDP
                                                      ↳ Narrowing
                                                        ↳ QDP
                                                          ↳ DependencyGraphProof
                                                            ↳ QDP
                                                              ↳ Rewriting
                                                                ↳ QDP
                                                                  ↳ Rewriting
                                                                    ↳ QDP
                                                                      ↳ Narrowing
                                                                        ↳ QDP
                                                                          ↳ DependencyGraphProof
                                                                            ↳ QDP
                                                                              ↳ UsableRulesProof
                                                                                ↳ QDP
                                                                                  ↳ Rewriting
                                                                                    ↳ QDP
                                                                                      ↳ UsableRulesProof
                                                                                        ↳ QDP
                                                                                          ↳ Rewriting
                                                                                            ↳ QDP
                                                                                              ↳ UsableRulesProof
QDP
                                                                                                  ↳ QReductionProof

Q DP problem:
The TRS P consists of the following rules:

COND_EVAL(true, pos(x0), neg(x1), y2) → EVAL(minus_nat(x0, x1), neg(plus_nat(x1, s(s(0)))), y2)
EVAL(pos(x0), y1, y2) → COND_EVAL(true, pos(x0), y1, y2)
COND_EVAL(true, pos(x0), pos(x1), y2) → EVAL(pos(plus_nat(x0, x1)), minus_nat(x1, s(s(0))), y2)
EVAL(pos(x0), y1, y2) → COND_EVAL1(true, pos(x0), y1, y2)
COND_EVAL1(true, pos(x0), y1, pos(x1)) → EVAL(pos(plus_nat(x0, x1)), plus_int(pos(s(0)), y1), minus_nat(x1, s(s(0))))
COND_EVAL1(true, pos(x0), y1, neg(x1)) → EVAL(minus_nat(x0, x1), plus_int(pos(s(0)), y1), neg(plus_nat(x1, s(s(0)))))

The TRS R consists of the following rules:

plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), s(y)) → minus_nat(x, y)
minus_nat(0, 0) → pos(0)
minus_nat(s(x), 0) → pos(s(x))

The set Q consists of the following terms:

plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].

minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))



↳ ITRS
  ↳ ITRStoIDPProof
    ↳ IDP
      ↳ UsableRulesProof
        ↳ IDP
          ↳ IDPtoQDPProof
            ↳ QDP
              ↳ UsableRulesProof
                ↳ QDP
                  ↳ QReductionProof
                    ↳ QDP
                      ↳ Narrowing
                        ↳ QDP
                          ↳ DependencyGraphProof
                            ↳ QDP
                              ↳ Narrowing
                                ↳ QDP
                                  ↳ DependencyGraphProof
                                    ↳ QDP
                                      ↳ UsableRulesProof
                                        ↳ QDP
                                          ↳ QReductionProof
                                            ↳ QDP
                                              ↳ QDPOrderProof
                                                ↳ QDP
                                                  ↳ QDPOrderProof
                                                    ↳ QDP
                                                      ↳ Narrowing
                                                        ↳ QDP
                                                          ↳ DependencyGraphProof
                                                            ↳ QDP
                                                              ↳ Rewriting
                                                                ↳ QDP
                                                                  ↳ Rewriting
                                                                    ↳ QDP
                                                                      ↳ Narrowing
                                                                        ↳ QDP
                                                                          ↳ DependencyGraphProof
                                                                            ↳ QDP
                                                                              ↳ UsableRulesProof
                                                                                ↳ QDP
                                                                                  ↳ Rewriting
                                                                                    ↳ QDP
                                                                                      ↳ UsableRulesProof
                                                                                        ↳ QDP
                                                                                          ↳ Rewriting
                                                                                            ↳ QDP
                                                                                              ↳ UsableRulesProof
                                                                                                ↳ QDP
                                                                                                  ↳ QReductionProof
QDP
                                                                                                      ↳ ForwardInstantiation

Q DP problem:
The TRS P consists of the following rules:

COND_EVAL(true, pos(x0), neg(x1), y2) → EVAL(minus_nat(x0, x1), neg(plus_nat(x1, s(s(0)))), y2)
EVAL(pos(x0), y1, y2) → COND_EVAL(true, pos(x0), y1, y2)
COND_EVAL(true, pos(x0), pos(x1), y2) → EVAL(pos(plus_nat(x0, x1)), minus_nat(x1, s(s(0))), y2)
EVAL(pos(x0), y1, y2) → COND_EVAL1(true, pos(x0), y1, y2)
COND_EVAL1(true, pos(x0), y1, pos(x1)) → EVAL(pos(plus_nat(x0, x1)), plus_int(pos(s(0)), y1), minus_nat(x1, s(s(0))))
COND_EVAL1(true, pos(x0), y1, neg(x1)) → EVAL(minus_nat(x0, x1), plus_int(pos(s(0)), y1), neg(plus_nat(x1, s(s(0)))))

The TRS R consists of the following rules:

plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), s(y)) → minus_nat(x, y)
minus_nat(0, 0) → pos(0)
minus_nat(s(x), 0) → pos(s(x))

The set Q consists of the following terms:

plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By forward instantiating [JAR06] the rule EVAL(pos(x0), y1, y2) → COND_EVAL(true, pos(x0), y1, y2) we obtained the following new rules [LPAR04]:

EVAL(pos(x0), neg(y_1), x2) → COND_EVAL(true, pos(x0), neg(y_1), x2)
EVAL(pos(x0), pos(y_1), x2) → COND_EVAL(true, pos(x0), pos(y_1), x2)



↳ ITRS
  ↳ ITRStoIDPProof
    ↳ IDP
      ↳ UsableRulesProof
        ↳ IDP
          ↳ IDPtoQDPProof
            ↳ QDP
              ↳ UsableRulesProof
                ↳ QDP
                  ↳ QReductionProof
                    ↳ QDP
                      ↳ Narrowing
                        ↳ QDP
                          ↳ DependencyGraphProof
                            ↳ QDP
                              ↳ Narrowing
                                ↳ QDP
                                  ↳ DependencyGraphProof
                                    ↳ QDP
                                      ↳ UsableRulesProof
                                        ↳ QDP
                                          ↳ QReductionProof
                                            ↳ QDP
                                              ↳ QDPOrderProof
                                                ↳ QDP
                                                  ↳ QDPOrderProof
                                                    ↳ QDP
                                                      ↳ Narrowing
                                                        ↳ QDP
                                                          ↳ DependencyGraphProof
                                                            ↳ QDP
                                                              ↳ Rewriting
                                                                ↳ QDP
                                                                  ↳ Rewriting
                                                                    ↳ QDP
                                                                      ↳ Narrowing
                                                                        ↳ QDP
                                                                          ↳ DependencyGraphProof
                                                                            ↳ QDP
                                                                              ↳ UsableRulesProof
                                                                                ↳ QDP
                                                                                  ↳ Rewriting
                                                                                    ↳ QDP
                                                                                      ↳ UsableRulesProof
                                                                                        ↳ QDP
                                                                                          ↳ Rewriting
                                                                                            ↳ QDP
                                                                                              ↳ UsableRulesProof
                                                                                                ↳ QDP
                                                                                                  ↳ QReductionProof
                                                                                                    ↳ QDP
                                                                                                      ↳ ForwardInstantiation
QDP
                                                                                                          ↳ ForwardInstantiation

Q DP problem:
The TRS P consists of the following rules:

COND_EVAL(true, pos(x0), neg(x1), y2) → EVAL(minus_nat(x0, x1), neg(plus_nat(x1, s(s(0)))), y2)
COND_EVAL(true, pos(x0), pos(x1), y2) → EVAL(pos(plus_nat(x0, x1)), minus_nat(x1, s(s(0))), y2)
EVAL(pos(x0), y1, y2) → COND_EVAL1(true, pos(x0), y1, y2)
COND_EVAL1(true, pos(x0), y1, pos(x1)) → EVAL(pos(plus_nat(x0, x1)), plus_int(pos(s(0)), y1), minus_nat(x1, s(s(0))))
COND_EVAL1(true, pos(x0), y1, neg(x1)) → EVAL(minus_nat(x0, x1), plus_int(pos(s(0)), y1), neg(plus_nat(x1, s(s(0)))))
EVAL(pos(x0), neg(y_1), x2) → COND_EVAL(true, pos(x0), neg(y_1), x2)
EVAL(pos(x0), pos(y_1), x2) → COND_EVAL(true, pos(x0), pos(y_1), x2)

The TRS R consists of the following rules:

plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), s(y)) → minus_nat(x, y)
minus_nat(0, 0) → pos(0)
minus_nat(s(x), 0) → pos(s(x))

The set Q consists of the following terms:

plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By forward instantiating [JAR06] the rule EVAL(pos(x0), y1, y2) → COND_EVAL1(true, pos(x0), y1, y2) we obtained the following new rules [LPAR04]:

EVAL(pos(x0), x1, neg(y_2)) → COND_EVAL1(true, pos(x0), x1, neg(y_2))
EVAL(pos(x0), x1, pos(y_2)) → COND_EVAL1(true, pos(x0), x1, pos(y_2))



↳ ITRS
  ↳ ITRStoIDPProof
    ↳ IDP
      ↳ UsableRulesProof
        ↳ IDP
          ↳ IDPtoQDPProof
            ↳ QDP
              ↳ UsableRulesProof
                ↳ QDP
                  ↳ QReductionProof
                    ↳ QDP
                      ↳ Narrowing
                        ↳ QDP
                          ↳ DependencyGraphProof
                            ↳ QDP
                              ↳ Narrowing
                                ↳ QDP
                                  ↳ DependencyGraphProof
                                    ↳ QDP
                                      ↳ UsableRulesProof
                                        ↳ QDP
                                          ↳ QReductionProof
                                            ↳ QDP
                                              ↳ QDPOrderProof
                                                ↳ QDP
                                                  ↳ QDPOrderProof
                                                    ↳ QDP
                                                      ↳ Narrowing
                                                        ↳ QDP
                                                          ↳ DependencyGraphProof
                                                            ↳ QDP
                                                              ↳ Rewriting
                                                                ↳ QDP
                                                                  ↳ Rewriting
                                                                    ↳ QDP
                                                                      ↳ Narrowing
                                                                        ↳ QDP
                                                                          ↳ DependencyGraphProof
                                                                            ↳ QDP
                                                                              ↳ UsableRulesProof
                                                                                ↳ QDP
                                                                                  ↳ Rewriting
                                                                                    ↳ QDP
                                                                                      ↳ UsableRulesProof
                                                                                        ↳ QDP
                                                                                          ↳ Rewriting
                                                                                            ↳ QDP
                                                                                              ↳ UsableRulesProof
                                                                                                ↳ QDP
                                                                                                  ↳ QReductionProof
                                                                                                    ↳ QDP
                                                                                                      ↳ ForwardInstantiation
                                                                                                        ↳ QDP
                                                                                                          ↳ ForwardInstantiation
QDP

Q DP problem:
The TRS P consists of the following rules:

COND_EVAL(true, pos(x0), neg(x1), y2) → EVAL(minus_nat(x0, x1), neg(plus_nat(x1, s(s(0)))), y2)
COND_EVAL(true, pos(x0), pos(x1), y2) → EVAL(pos(plus_nat(x0, x1)), minus_nat(x1, s(s(0))), y2)
COND_EVAL1(true, pos(x0), y1, pos(x1)) → EVAL(pos(plus_nat(x0, x1)), plus_int(pos(s(0)), y1), minus_nat(x1, s(s(0))))
COND_EVAL1(true, pos(x0), y1, neg(x1)) → EVAL(minus_nat(x0, x1), plus_int(pos(s(0)), y1), neg(plus_nat(x1, s(s(0)))))
EVAL(pos(x0), neg(y_1), x2) → COND_EVAL(true, pos(x0), neg(y_1), x2)
EVAL(pos(x0), pos(y_1), x2) → COND_EVAL(true, pos(x0), pos(y_1), x2)
EVAL(pos(x0), x1, neg(y_2)) → COND_EVAL1(true, pos(x0), x1, neg(y_2))
EVAL(pos(x0), x1, pos(y_2)) → COND_EVAL1(true, pos(x0), x1, pos(y_2))

The TRS R consists of the following rules:

plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), s(y)) → minus_nat(x, y)
minus_nat(0, 0) → pos(0)
minus_nat(s(x), 0) → pos(s(x))

The set Q consists of the following terms:

plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.